Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic].

Identifieur interne : 000056 ( Ncbi/Merge ); précédent : 000055; suivant : 000057

[High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic].

Auteurs : Guan-Shi Qin [République populaire de Chine] ; Wei-Ping Qin ; Bao-Jiu Chen ; Shu-Lin E ; Zhong-Jiu Ge ; Xin-Guang Ren ; Shi-Hua Huang

Source :

RBID : pubmed:12938407

Descripteurs français

English descriptors

Abstract

In this paper, high efficiency and low threshold upconversion from IR to red is reported, for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic under 978 nm LD excitation. The component of sample in experiment is 65GeO2-25NaF-8.5BaF2-1Er2O3-0.5 Tm2O3, and the prepared method is obtained. The upconversion emission spectra under 978 nm LD excitation is measured at room temperature. Analyzing it, we find that introduction of Tm3+ into Er3+ doped system preferentially quenches the green upconversion fluorescence from 4S3/2 level of Er3+ duo to the efficient cross-relaxation of 4I13/2-->4I15/2 (Er): 3H6-->3H4 (Tm) which can significantly reduce the upconversion efficiency from 4I13/2 level to the emitting 4S3/2 level, and the Tm3+ behaves as a good sensitizer of the red upconversion from the 4F9/2 level of Er3+ which is mainly populated by the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er). However, at low Er3+ concentration (2 mol%), it is impossible for strong red upconversion. X-ray analysis is done, there are lots of nanocrystallites in MFG glass-ceramic. So we think, this red upconversion is attributed to Er3+ enriched fluoride microcrystallites, which makes the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er) more effective, therefore their active optical properties may be optimised. In the end, the relationship between LD working current and intensity of upconversion luminescence is discussed, the results confirm that both red and green upconversion processes are consisted by two photons.

PubMed: 12938407

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:12938407

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic].</title>
<author>
<name sortKey="Qin, Guan Shi" sort="Qin, Guan Shi" uniqKey="Qin G" first="Guan-Shi" last="Qin">Guan-Shi Qin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Changchun Institute of Optics, Fine Mechanics and Physics, Laboratory of Excited States Processes, Chinese Academy of Sciences, Changchun 130021, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Changchun Institute of Optics, Fine Mechanics and Physics, Laboratory of Excited States Processes, Chinese Academy of Sciences, Changchun 130021</wicri:regionArea>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qin, Wei Ping" sort="Qin, Wei Ping" uniqKey="Qin W" first="Wei-Ping" last="Qin">Wei-Ping Qin</name>
</author>
<author>
<name sortKey="Chen, Bao Jiu" sort="Chen, Bao Jiu" uniqKey="Chen B" first="Bao-Jiu" last="Chen">Bao-Jiu Chen</name>
</author>
<author>
<name sortKey="E, Shu Lin" sort="E, Shu Lin" uniqKey="E S" first="Shu-Lin" last="E">Shu-Lin E</name>
</author>
<author>
<name sortKey="Ge, Zhong Jiu" sort="Ge, Zhong Jiu" uniqKey="Ge Z" first="Zhong-Jiu" last="Ge">Zhong-Jiu Ge</name>
</author>
<author>
<name sortKey="Ren, Xin Guang" sort="Ren, Xin Guang" uniqKey="Ren X" first="Xin-Guang" last="Ren">Xin-Guang Ren</name>
</author>
<author>
<name sortKey="Huang, Shi Hua" sort="Huang, Shi Hua" uniqKey="Huang S" first="Shi-Hua" last="Huang">Shi-Hua Huang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12938407</idno>
<idno type="pmid">12938407</idno>
<idno type="wicri:Area/PubMed/Corpus">000696</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000696</idno>
<idno type="wicri:Area/PubMed/Curation">000696</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000696</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000696</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000696</idno>
<idno type="wicri:Area/Ncbi/Merge">000056</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic].</title>
<author>
<name sortKey="Qin, Guan Shi" sort="Qin, Guan Shi" uniqKey="Qin G" first="Guan-Shi" last="Qin">Guan-Shi Qin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Changchun Institute of Optics, Fine Mechanics and Physics, Laboratory of Excited States Processes, Chinese Academy of Sciences, Changchun 130021, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Changchun Institute of Optics, Fine Mechanics and Physics, Laboratory of Excited States Processes, Chinese Academy of Sciences, Changchun 130021</wicri:regionArea>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qin, Wei Ping" sort="Qin, Wei Ping" uniqKey="Qin W" first="Wei-Ping" last="Qin">Wei-Ping Qin</name>
</author>
<author>
<name sortKey="Chen, Bao Jiu" sort="Chen, Bao Jiu" uniqKey="Chen B" first="Bao-Jiu" last="Chen">Bao-Jiu Chen</name>
</author>
<author>
<name sortKey="E, Shu Lin" sort="E, Shu Lin" uniqKey="E S" first="Shu-Lin" last="E">Shu-Lin E</name>
</author>
<author>
<name sortKey="Ge, Zhong Jiu" sort="Ge, Zhong Jiu" uniqKey="Ge Z" first="Zhong-Jiu" last="Ge">Zhong-Jiu Ge</name>
</author>
<author>
<name sortKey="Ren, Xin Guang" sort="Ren, Xin Guang" uniqKey="Ren X" first="Xin-Guang" last="Ren">Xin-Guang Ren</name>
</author>
<author>
<name sortKey="Huang, Shi Hua" sort="Huang, Shi Hua" uniqKey="Huang S" first="Shi-Hua" last="Huang">Shi-Hua Huang</name>
</author>
</analytic>
<series>
<title level="j">Guang pu xue yu guang pu fen xi = Guang pu</title>
<idno type="ISSN">1000-0593</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ceramics</term>
<term>Crystallization</term>
<term>Energy Transfer</term>
<term>Erbium (chemistry)</term>
<term>Fluorine (chemistry)</term>
<term>Glass</term>
<term>Luminescence</term>
<term>Nanotechnology</term>
<term>Organometallic Compounds (chemistry)</term>
<term>Oxides (chemistry)</term>
<term>Spectrophotometry (methods)</term>
<term>Temperature</term>
<term>Thulium (chemistry)</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Composés organométalliques ()</term>
<term>Cristallisation</term>
<term>Céramiques</term>
<term>Diffraction des rayons X</term>
<term>Erbium ()</term>
<term>Fluor ()</term>
<term>Luminescence</term>
<term>Nanotechnologie</term>
<term>Oxydes ()</term>
<term>Spectrophotométrie ()</term>
<term>Température</term>
<term>Thulium ()</term>
<term>Transfert d'énergie</term>
<term>Verre</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Erbium</term>
<term>Fluorine</term>
<term>Organometallic Compounds</term>
<term>Oxides</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Spectrophotometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ceramics</term>
<term>Crystallization</term>
<term>Energy Transfer</term>
<term>Glass</term>
<term>Luminescence</term>
<term>Nanotechnology</term>
<term>Temperature</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Composés organométalliques</term>
<term>Cristallisation</term>
<term>Céramiques</term>
<term>Diffraction des rayons X</term>
<term>Erbium</term>
<term>Fluor</term>
<term>Luminescence</term>
<term>Nanotechnologie</term>
<term>Oxydes</term>
<term>Spectrophotométrie</term>
<term>Température</term>
<term>Thulium</term>
<term>Transfert d'énergie</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, high efficiency and low threshold upconversion from IR to red is reported, for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic under 978 nm LD excitation. The component of sample in experiment is 65GeO2-25NaF-8.5BaF2-1Er2O3-0.5 Tm2O3, and the prepared method is obtained. The upconversion emission spectra under 978 nm LD excitation is measured at room temperature. Analyzing it, we find that introduction of Tm3+ into Er3+ doped system preferentially quenches the green upconversion fluorescence from 4S3/2 level of Er3+ duo to the efficient cross-relaxation of 4I13/2-->4I15/2 (Er): 3H6-->3H4 (Tm) which can significantly reduce the upconversion efficiency from 4I13/2 level to the emitting 4S3/2 level, and the Tm3+ behaves as a good sensitizer of the red upconversion from the 4F9/2 level of Er3+ which is mainly populated by the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er). However, at low Er3+ concentration (2 mol%), it is impossible for strong red upconversion. X-ray analysis is done, there are lots of nanocrystallites in MFG glass-ceramic. So we think, this red upconversion is attributed to Er3+ enriched fluoride microcrystallites, which makes the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er) more effective, therefore their active optical properties may be optimised. In the end, the relationship between LD working current and intensity of upconversion luminescence is discussed, the results confirm that both red and green upconversion processes are consisted by two photons.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">12938407</PMID>
<DateCreated>
<Year>2003</Year>
<Month>08</Month>
<Day>26</Day>
</DateCreated>
<DateCompleted>
<Year>2004</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1000-0593</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2002</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Guang pu xue yu guang pu fen xi = Guang pu</Title>
<ISOAbbreviation>Guang Pu Xue Yu Guang Pu Fen Xi</ISOAbbreviation>
</Journal>
<ArticleTitle>[High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic].</ArticleTitle>
<Pagination>
<MedlinePgn>705-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In this paper, high efficiency and low threshold upconversion from IR to red is reported, for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic under 978 nm LD excitation. The component of sample in experiment is 65GeO2-25NaF-8.5BaF2-1Er2O3-0.5 Tm2O3, and the prepared method is obtained. The upconversion emission spectra under 978 nm LD excitation is measured at room temperature. Analyzing it, we find that introduction of Tm3+ into Er3+ doped system preferentially quenches the green upconversion fluorescence from 4S3/2 level of Er3+ duo to the efficient cross-relaxation of 4I13/2-->4I15/2 (Er): 3H6-->3H4 (Tm) which can significantly reduce the upconversion efficiency from 4I13/2 level to the emitting 4S3/2 level, and the Tm3+ behaves as a good sensitizer of the red upconversion from the 4F9/2 level of Er3+ which is mainly populated by the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er). However, at low Er3+ concentration (2 mol%), it is impossible for strong red upconversion. X-ray analysis is done, there are lots of nanocrystallites in MFG glass-ceramic. So we think, this red upconversion is attributed to Er3+ enriched fluoride microcrystallites, which makes the cross-relaxation of 3H4-->3H6 (Tm): 4I11/2-->4F9/2 (Er) more effective, therefore their active optical properties may be optimised. In the end, the relationship between LD working current and intensity of upconversion luminescence is discussed, the results confirm that both red and green upconversion processes are consisted by two photons.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Guan-shi</ForeName>
<Initials>GS</Initials>
<AffiliationInfo>
<Affiliation>Changchun Institute of Optics, Fine Mechanics and Physics, Laboratory of Excited States Processes, Chinese Academy of Sciences, Changchun 130021, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Wei-ping</ForeName>
<Initials>WP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Bao-jiu</ForeName>
<Initials>BJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>E</LastName>
<ForeName>Shu-lin</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ge</LastName>
<ForeName>Zhong-jiu</ForeName>
<Initials>ZJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Xin-guang</ForeName>
<Initials>XG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Shi-hua</ForeName>
<Initials>SH</Initials>
</Author>
</AuthorList>
<Language>chi</Language>
<PublicationTypeList>
<PublicationType UI="D004740">English Abstract</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>Guang Pu Xue Yu Guang Pu Fen Xi</MedlineTA>
<NlmUniqueID>9424805</NlmUniqueID>
<ISSNLinking>1000-0593</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>284SYP0193</RegistryNumber>
<NameOfSubstance UI="D005461">Fluorine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>77B218D3YE</RegistryNumber>
<NameOfSubstance UI="D004871">Erbium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7BCS2CW398</RegistryNumber>
<NameOfSubstance UI="C014559">fluorine monoxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002516">Ceramics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003460">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004735">Energy Transfer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004871">Erbium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005461">Fluorine</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005898">Glass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D049449">Luminescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D036103">Nanotechnology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009942">Organometallic Compounds</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010087">Oxides</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013053">Spectrophotometry</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013696">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014961">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12938407</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Dongbei</li>
<li>Jilin</li>
</region>
<settlement>
<li>Changchun</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Bao Jiu" sort="Chen, Bao Jiu" uniqKey="Chen B" first="Bao-Jiu" last="Chen">Bao-Jiu Chen</name>
<name sortKey="E, Shu Lin" sort="E, Shu Lin" uniqKey="E S" first="Shu-Lin" last="E">Shu-Lin E</name>
<name sortKey="Ge, Zhong Jiu" sort="Ge, Zhong Jiu" uniqKey="Ge Z" first="Zhong-Jiu" last="Ge">Zhong-Jiu Ge</name>
<name sortKey="Huang, Shi Hua" sort="Huang, Shi Hua" uniqKey="Huang S" first="Shi-Hua" last="Huang">Shi-Hua Huang</name>
<name sortKey="Qin, Wei Ping" sort="Qin, Wei Ping" uniqKey="Qin W" first="Wei-Ping" last="Qin">Wei-Ping Qin</name>
<name sortKey="Ren, Xin Guang" sort="Ren, Xin Guang" uniqKey="Ren X" first="Xin-Guang" last="Ren">Xin-Guang Ren</name>
</noCountry>
<country name="République populaire de Chine">
<region name="Jilin">
<name sortKey="Qin, Guan Shi" sort="Qin, Guan Shi" uniqKey="Qin G" first="Guan-Shi" last="Qin">Guan-Shi Qin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000056 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000056 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:12938407
   |texte=   [High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:12938407" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024