Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal Nitride Cluster Fullerenes: Their Current State and Future Prospects

Identifieur interne : 001578 ( Main/Merge ); précédent : 001577; suivant : 001579

Metal Nitride Cluster Fullerenes: Their Current State and Future Prospects

Auteurs : Lothar Dunsch [Allemagne] ; Shangfeng Yang [Allemagne]

Source :

RBID : ISTEX:214B1B3855AB380E4039EEBC119DDE0AEE87C0DD

Descripteurs français

English descriptors

Abstract

The world of endohedral fullerenes was significantly enlarged over the past seven years by the cluster fullerenes, which contain structures such as the M2C2 carbides and the M3N nitrides. While the carbide clusters are generated under the standard arc‐burning conditions according to stabilization conditions, the nitride cluster fullerenes (NCFs) are formed by varying the composition of the cooling gas atmosphere in the arc‐burning process. The special conditions for NCF synthesis is described in detail and the optimum conditions for the production of NCFs as the main product in fullerene syntheses are given. A general review of all NCFs reported to date consists of the structures, properties, and stability of the NCFs as well as the abundance of the NCFs in the fullerene soot. It is shown that all cages with even carbon atoms from C68 to C98 are available as endohedral nitride cluster structures (with the exception of C72, C74, and C76). Specifically, the NCFs form the largest number of structures that violate the isolated pentagon rule (IPR). Finally some practical applications of these cluster fullerenes are illustrated and an outlook is given, taking the superior stability of these endohedral fullerenes into account.

Url:
DOI: 10.1002/smll.200700036

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:214B1B3855AB380E4039EEBC119DDE0AEE87C0DD

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal Nitride Cluster Fullerenes: Their Current State and Future Prospects</title>
<author>
<name sortKey="Dunsch, Lothar" sort="Dunsch, Lothar" uniqKey="Dunsch L" first="Lothar" last="Dunsch">Lothar Dunsch</name>
</author>
<author>
<name sortKey="Yang, Shangfeng" sort="Yang, Shangfeng" uniqKey="Yang S" first="Shangfeng" last="Yang">Shangfeng Yang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:214B1B3855AB380E4039EEBC119DDE0AEE87C0DD</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1002/smll.200700036</idno>
<idno type="url">https://api.istex.fr/document/214B1B3855AB380E4039EEBC119DDE0AEE87C0DD/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000726</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000726</idno>
<idno type="wicri:Area/Istex/Curation">000726</idno>
<idno type="wicri:Area/Istex/Checkpoint">000580</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000580</idno>
<idno type="wicri:doubleKey">1613-6810:2007:Dunsch L:metal:nitride:cluster</idno>
<idno type="wicri:Area/Main/Merge">001578</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Metal Nitride Cluster Fullerenes: Their Current State and Future Prospects</title>
<author>
<name sortKey="Dunsch, Lothar" sort="Dunsch, Lothar" uniqKey="Dunsch L" first="Lothar" last="Dunsch">Lothar Dunsch</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Yang, Shangfeng" sort="Yang, Shangfeng" uniqKey="Yang S" first="Shangfeng" last="Yang">Shangfeng Yang</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Small</title>
<title level="j" type="alt">SMALL</title>
<idno type="ISSN">1613-6810</idno>
<idno type="eISSN">1613-6829</idno>
<imprint>
<biblScope unit="vol">3</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1298">1298</biblScope>
<biblScope unit="page" to="1320">1320</biblScope>
<biblScope unit="page-count">23</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2007-08-03">2007-08-03</date>
</imprint>
<idno type="ISSN">1613-6810</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1613-6810</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adduct</term>
<term>Akasaka</term>
<term>American chemical society</term>
<term>Angew</term>
<term>Antisymmetric</term>
<term>Asterisks mark</term>
<term>Balch</term>
<term>Bond formation</term>
<term>Cage</term>
<term>Cage modes</term>
<term>Cage sizes</term>
<term>Cage structure</term>
<term>Cage symmetry</term>
<term>Carbon cage</term>
<term>Charge transfer</term>
<term>Chem</term>
<term>Cluster</term>
<term>Cluster size</term>
<term>Contrast agents</term>
<term>Conventional metallofullerenes</term>
<term>Copyright</term>
<term>Crystal structure</term>
<term>Crystallographic study</term>
<term>Cyclic voltammogram</term>
<term>Cycloaddition</term>
<term>Dorn</term>
<term>Dresden</term>
<term>Duchamp</term>
<term>Dunsch</term>
<term>Dy3n</term>
<term>Echegoyen</term>
<term>Effective valency</term>
<term>Electrochemical</term>
<term>Electronic properties</term>
<term>Empty fullerenes</term>
<term>Encaged</term>
<term>Encaged cluster</term>
<term>Endohedral</term>
<term>Endohedral fullerene</term>
<term>Endohedral fullerenes</term>
<term>Endohedral metallofullerenes</term>
<term>First example</term>
<term>First oxidation</term>
<term>First time</term>
<term>Force field</term>
<term>Force fields</term>
<term>Ftir</term>
<term>Fullerene</term>
<term>Fullerene cage</term>
<term>Fullerene cage isomers</term>
<term>Fullerene soot</term>
<term>Gd3n</term>
<term>Georgi</term>
<term>Gmbh</term>
<term>Harich</term>
<term>Homo</term>
<term>Hplc</term>
<term>Icosahedral</term>
<term>Icosahedral carbon cage</term>
<term>Inset</term>
<term>Ionic radius</term>
<term>Isomer</term>
<term>Isomeric</term>
<term>Kalbac</term>
<term>Kato</term>
<term>Kgaa</term>
<term>Knupfer</term>
<term>Krause</term>
<term>Large variety</term>
<term>Lett</term>
<term>Magnetic moment</term>
<term>Magnetic moments</term>
<term>Magnetic properties</term>
<term>Main product</term>
<term>Materials research</term>
<term>Metal atoms</term>
<term>Metal ions</term>
<term>Metal nitride cluster fullerenes</term>
<term>Metallofullerene</term>
<term>Metallofullerenes</term>
<term>Mutual stabilization</term>
<term>Nagase</term>
<term>Ncfs</term>
<term>Nitride</term>
<term>Nitride cluster</term>
<term>Nitride cluster fullerenes</term>
<term>Nitride clusters</term>
<term>Olmstead</term>
<term>Other hand</term>
<term>Peapods</term>
<term>Pentagon rule</term>
<term>Photoemission</term>
<term>Photoemission spectrum</term>
<term>Phys</term>
<term>Pichler</term>
<term>Planar</term>
<term>Polymer</term>
<term>Popov</term>
<term>Potential applications</term>
<term>Pyramidal</term>
<term>Raman</term>
<term>Raman spectra</term>
<term>Recycling hplc</term>
<term>Redox</term>
<term>Room temperature</term>
<term>Sc3n</term>
<term>Sc3n cluster</term>
<term>Scan rate</term>
<term>Second isomer</term>
<term>Shinohara</term>
<term>Solid state</term>
<term>Soot</term>
<term>Spectroscopic</term>
<term>Spectroscopy</term>
<term>Toluene</term>
<term>Valency</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vibrational</term>
<term>Vibrational modes</term>
<term>Wang</term>
<term>Weinheim</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adduct</term>
<term>Akasaka</term>
<term>American chemical society</term>
<term>Angew</term>
<term>Antisymmetric</term>
<term>Asterisks mark</term>
<term>Balch</term>
<term>Bond formation</term>
<term>Cage</term>
<term>Cage modes</term>
<term>Cage sizes</term>
<term>Cage structure</term>
<term>Cage symmetry</term>
<term>Carbon cage</term>
<term>Charge transfer</term>
<term>Chem</term>
<term>Cluster</term>
<term>Cluster size</term>
<term>Contrast agents</term>
<term>Conventional metallofullerenes</term>
<term>Copyright</term>
<term>Crystal structure</term>
<term>Crystallographic study</term>
<term>Cyclic voltammogram</term>
<term>Cycloaddition</term>
<term>Dorn</term>
<term>Dresden</term>
<term>Duchamp</term>
<term>Dunsch</term>
<term>Dy3n</term>
<term>Echegoyen</term>
<term>Effective valency</term>
<term>Electrochemical</term>
<term>Electronic properties</term>
<term>Empty fullerenes</term>
<term>Encaged</term>
<term>Encaged cluster</term>
<term>Endohedral</term>
<term>Endohedral fullerene</term>
<term>Endohedral fullerenes</term>
<term>Endohedral metallofullerenes</term>
<term>First example</term>
<term>First oxidation</term>
<term>First time</term>
<term>Force field</term>
<term>Force fields</term>
<term>Ftir</term>
<term>Fullerene</term>
<term>Fullerene cage</term>
<term>Fullerene cage isomers</term>
<term>Fullerene soot</term>
<term>Gd3n</term>
<term>Georgi</term>
<term>Gmbh</term>
<term>Harich</term>
<term>Homo</term>
<term>Hplc</term>
<term>Icosahedral</term>
<term>Icosahedral carbon cage</term>
<term>Inset</term>
<term>Ionic radius</term>
<term>Isomer</term>
<term>Isomeric</term>
<term>Kalbac</term>
<term>Kato</term>
<term>Kgaa</term>
<term>Knupfer</term>
<term>Krause</term>
<term>Large variety</term>
<term>Lett</term>
<term>Magnetic moment</term>
<term>Magnetic moments</term>
<term>Magnetic properties</term>
<term>Main product</term>
<term>Materials research</term>
<term>Metal atoms</term>
<term>Metal ions</term>
<term>Metal nitride cluster fullerenes</term>
<term>Metallofullerene</term>
<term>Metallofullerenes</term>
<term>Mutual stabilization</term>
<term>Nagase</term>
<term>Ncfs</term>
<term>Nitride</term>
<term>Nitride cluster</term>
<term>Nitride cluster fullerenes</term>
<term>Nitride clusters</term>
<term>Olmstead</term>
<term>Other hand</term>
<term>Peapods</term>
<term>Pentagon rule</term>
<term>Photoemission</term>
<term>Photoemission spectrum</term>
<term>Phys</term>
<term>Pichler</term>
<term>Planar</term>
<term>Polymer</term>
<term>Popov</term>
<term>Potential applications</term>
<term>Pyramidal</term>
<term>Raman</term>
<term>Raman spectra</term>
<term>Recycling hplc</term>
<term>Redox</term>
<term>Room temperature</term>
<term>Sc3n</term>
<term>Sc3n cluster</term>
<term>Scan rate</term>
<term>Second isomer</term>
<term>Shinohara</term>
<term>Solid state</term>
<term>Soot</term>
<term>Spectroscopic</term>
<term>Spectroscopy</term>
<term>Toluene</term>
<term>Valency</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vibrational</term>
<term>Vibrational modes</term>
<term>Wang</term>
<term>Weinheim</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Droit d'auteur</term>
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The world of endohedral fullerenes was significantly enlarged over the past seven years by the cluster fullerenes, which contain structures such as the M2C2 carbides and the M3N nitrides. While the carbide clusters are generated under the standard arc‐burning conditions according to stabilization conditions, the nitride cluster fullerenes (NCFs) are formed by varying the composition of the cooling gas atmosphere in the arc‐burning process. The special conditions for NCF synthesis is described in detail and the optimum conditions for the production of NCFs as the main product in fullerene syntheses are given. A general review of all NCFs reported to date consists of the structures, properties, and stability of the NCFs as well as the abundance of the NCFs in the fullerene soot. It is shown that all cages with even carbon atoms from C68 to C98 are available as endohedral nitride cluster structures (with the exception of C72, C74, and C76). Specifically, the NCFs form the largest number of structures that violate the isolated pentagon rule (IPR). Finally some practical applications of these cluster fullerenes are illustrated and an outlook is given, taking the superior stability of these endohedral fullerenes into account.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001578 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 001578 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:214B1B3855AB380E4039EEBC119DDE0AEE87C0DD
   |texte=   Metal Nitride Cluster Fullerenes: Their Current State and Future Prospects
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024