Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS)

Identifieur interne : 000346 ( Main/Curation ); précédent : 000345; suivant : 000347

Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS)

Auteurs : Samuel Maritim [États-Unis] ; Yuegao Huang [États-Unis] ; Daniel Coman [États-Unis] ; Fahmeed Hyder [États-Unis]

Source :

RBID : PMC:4348029

Abstract

Purposely-designed magnetic resonance imaging (MRI) probes encapsulated in liposomes, which alter contrast by their paramagnetic effect on longitudinal (T1) and transverse (T2) relaxation times of tissue water, hold promise for molecular imaging. However a challenge with liposomal MRI probes that are solely dependent on enhancement of water relaxation is lack of specific molecular readouts, especially in strong paramagnetic environments, thereby reducing the potential for monitoring disease treatment (e.g., cancer) beyond the generated MRI contrast. Previously it has been shown that molecular imaging with magnetic resonance is also possible by detecting the signal of non-exchangeable protons emanating from paramagnetic lanthanide complexes themselves (e.g., TmDOTP5−, which is a Tm3+-containing biosensor based on a macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate), DOTP5−) with a method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Here we show that BIRDS is useful for molecular imaging with probes like TmDOTP5− even when they are encapsulated inside liposomes with ultra-strong T1 and T2 contrast agents (e.g., Magnevist and Molday ION, respectively). We demonstrate that molecular readouts like pH and temperature determined from probes like TmDOTP5− are resilient, because sensitivity of the chemical shifts to the probe’s environment is not compromised by presence of other paramagnetic agents contained within the same nanocarrier milieu. Because high liposomal encapsulation efficiency allows for robust MRI contrast and signal amplification for BIRDS, nanoengineered liposomal probes containing both monomers like TmDOTP5− and paramagnetic contrast agents could allow high spatial resolution imaging of disease diagnosis (with MRI) and status monitoring (with BIRDS).


Url:
DOI: 10.1007/s00775-014-1200-z
PubMed: 25304046
PubMed Central: 4348029

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4348029

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS)</title>
<author>
<name sortKey="Maritim, Samuel" sort="Maritim, Samuel" uniqKey="Maritim S" first="Samuel" last="Maritim">Samuel Maritim</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yuegao" sort="Huang, Yuegao" uniqKey="Huang Y" first="Yuegao" last="Huang">Yuegao Huang</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Magnetic Resonance Research Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Magnetic Resonance Research Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Magnetic Resonance Research Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25304046</idno>
<idno type="pmc">4348029</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348029</idno>
<idno type="RBID">PMC:4348029</idno>
<idno type="doi">10.1007/s00775-014-1200-z</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000337</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000337</idno>
<idno type="wicri:Area/Pmc/Curation">000337</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000337</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000149</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000149</idno>
<idno type="wicri:Area/Ncbi/Merge">000902</idno>
<idno type="wicri:Area/Ncbi/Curation">000902</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000902</idno>
<idno type="wicri:doubleKey">0949-8257:2014:Maritim S:characterization:of:a</idno>
<idno type="wicri:Area/Main/Merge">000346</idno>
<idno type="wicri:Area/Main/Curation">000346</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS)</title>
<author>
<name sortKey="Maritim, Samuel" sort="Maritim, Samuel" uniqKey="Maritim S" first="Samuel" last="Maritim">Samuel Maritim</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yuegao" sort="Huang, Yuegao" uniqKey="Huang Y" first="Yuegao" last="Huang">Yuegao Huang</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Magnetic Resonance Research Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A2">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Magnetic Resonance Research Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Magnetic Resonance Research Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</title>
<idno type="ISSN">0949-8257</idno>
<idno type="eISSN">1432-1327</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Purposely-designed magnetic resonance imaging (MRI) probes encapsulated in liposomes, which alter contrast by their paramagnetic effect on longitudinal (T
<sub>1</sub>
) and transverse (T
<sub>2</sub>
) relaxation times of tissue water, hold promise for molecular imaging. However a challenge with liposomal MRI probes that are solely dependent on enhancement of water relaxation is lack of specific molecular readouts, especially in strong paramagnetic environments, thereby reducing the potential for monitoring disease treatment (e.g., cancer) beyond the generated MRI contrast. Previously it has been shown that molecular imaging with magnetic resonance is also possible by detecting the signal of non-exchangeable protons emanating from paramagnetic lanthanide complexes themselves (e.g., TmDOTP
<sup>5−</sup>
, which is a Tm
<sup>3+</sup>
-containing biosensor based on a macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate), DOTP
<sup>5−</sup>
) with a method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Here we show that BIRDS is useful for molecular imaging with probes like TmDOTP
<sup>5−</sup>
even when they are encapsulated inside liposomes with ultra-strong T
<sub>1</sub>
and T
<sub>2</sub>
contrast agents (e.g., Magnevist and Molday ION, respectively). We demonstrate that molecular readouts like pH and temperature determined from probes like TmDOTP
<sup>5−</sup>
are resilient, because sensitivity of the chemical shifts to the probe’s environment is not compromised by presence of other paramagnetic agents contained within the same nanocarrier milieu. Because high liposomal encapsulation efficiency allows for robust MRI contrast and signal amplification for BIRDS, nanoengineered liposomal probes containing both monomers like TmDOTP
<sup>5−</sup>
and paramagnetic contrast agents could allow high spatial resolution imaging of disease diagnosis (with MRI) and status monitoring (with BIRDS).</p>
</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000346 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000346 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4348029
   |texte=   Characterization of a lanthanide complex encapsulated with MRI contrast agents into liposomes for biosensor imaging of redundant deviation in shifts (BIRDS)
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:25304046" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024