Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cooperative luminescence in ytterbium-doped CsCdBr3

Identifieur interne : 003311 ( Istex/Corpus ); précédent : 003310; suivant : 003312

Cooperative luminescence in ytterbium-doped CsCdBr3

Auteurs : Ph. Goldner ; F. Pellé ; D. Meichenin ; F. Auzel

Source :

RBID : ISTEX:E78EC7811E6B2721141B701BF4FCA272CC53BB4C

English descriptors

Abstract

Abstract: Under near infrared excitation, ytterbium-doped CsCdBr3 exhibits a strong blue luminescence due to a cooperative effect. The energy level scheme of Yb3+ ions has been determined at low temperature by spectroscopic measurements, allowing us to calculate the theoretical spectrum of the cooperative luminescence. The good agreement obtained with the experimental data confirms the process governing the anti-Stokes emission. We also present a comparison between theoretical and experimental cooperative luminescence rates which is of particular interest because trivalent ions enter this lattice to form pairs of fixed structure. Theoretical calculations of the cooperative luminescence probability are therefore much easier than in other compounds. The experimental cooperative rate constant is 0.13 s−1, whereas the dipole-quadrupole and forced dipole-dipole interactions result in a theoretical rate constant of approximately 0.70−1.6 × 10−2s−1 for symmetric pairs and 0.76−1.7 × 10−1s−1 for asymmetric ones. From a tentative estimation of asymmetric pairs concentration, we find a total cooperative rate constant between 2.2 × 10−2 and 5.0 × 10−2s−1. The agreement with experiment is considered to be reasonable since the radial integrals inserted in the theoretical calculations are not adjusted to experiment.

Url:
DOI: 10.1016/S0022-2313(96)00128-7

Links to Exploration step

ISTEX:E78EC7811E6B2721141B701BF4FCA272CC53BB4C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Cooperative luminescence in ytterbium-doped CsCdBr3</title>
<author>
<name sortKey="Goldner, Ph" sort="Goldner, Ph" uniqKey="Goldner P" first="Ph." last="Goldner">Ph. Goldner</name>
<affiliation>
<mods:affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pelle, F" sort="Pelle, F" uniqKey="Pelle F" first="F." last="Pellé">F. Pellé</name>
<affiliation>
<mods:affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meichenin, D" sort="Meichenin, D" uniqKey="Meichenin D" first="D." last="Meichenin">D. Meichenin</name>
<affiliation>
<mods:affiliation>France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Auzel, F" sort="Auzel, F" uniqKey="Auzel F" first="F." last="Auzel">F. Auzel</name>
<affiliation>
<mods:affiliation>Correspondence address: France Telecom, CNET PAB Laboratoire Bagneux, 196 Avenue Henri-Ravera, BP 207, F-92225 Bagneux Cedex, France.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E78EC7811E6B2721141B701BF4FCA272CC53BB4C</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1016/S0022-2313(96)00128-7</idno>
<idno type="url">https://api.istex.fr/document/E78EC7811E6B2721141B701BF4FCA272CC53BB4C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003311</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003311</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Cooperative luminescence in ytterbium-doped CsCdBr3</title>
<author>
<name sortKey="Goldner, Ph" sort="Goldner, Ph" uniqKey="Goldner P" first="Ph." last="Goldner">Ph. Goldner</name>
<affiliation>
<mods:affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pelle, F" sort="Pelle, F" uniqKey="Pelle F" first="F." last="Pellé">F. Pellé</name>
<affiliation>
<mods:affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meichenin, D" sort="Meichenin, D" uniqKey="Meichenin D" first="D." last="Meichenin">D. Meichenin</name>
<affiliation>
<mods:affiliation>France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Auzel, F" sort="Auzel, F" uniqKey="Auzel F" first="F." last="Auzel">F. Auzel</name>
<affiliation>
<mods:affiliation>Correspondence address: France Telecom, CNET PAB Laboratoire Bagneux, 196 Avenue Henri-Ravera, BP 207, F-92225 Bagneux Cedex, France.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Luminescence</title>
<title level="j" type="abbrev">LUMIN</title>
<idno type="ISSN">0022-2313</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">71</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="137">137</biblScope>
<biblScope unit="page" to="150">150</biblScope>
</imprint>
<idno type="ISSN">0022-2313</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficient</term>
<term>Absorption spectrum</term>
<term>Apte effect</term>
<term>Asymmetric</term>
<term>Asymmetric pairs</term>
<term>Asymmetric pairs concentration</term>
<term>Cooperative effect</term>
<term>Cooperative effects</term>
<term>Cooperative emission</term>
<term>Cooperative emission rate</term>
<term>Cooperative luminescence</term>
<term>Cooperative luminescence rate</term>
<term>Cooperative rate</term>
<term>Cooperative rate constants</term>
<term>Cooperative spectrum</term>
<term>Cooperative transitions</term>
<term>Cscdbr</term>
<term>Cubic symmetry</term>
<term>Divalent state</term>
<term>Electronic coulomb interaction</term>
<term>Electronic interaction</term>
<term>Electronic lines</term>
<term>Emission lines</term>
<term>Equal population</term>
<term>Excitation</term>
<term>Excitation spectrum</term>
<term>Excitation spectrum monitoring</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Experimental value</term>
<term>Extra line</term>
<term>Extra lines</term>
<term>Goldner</term>
<term>Good agreement</term>
<term>Ground state</term>
<term>Infrared emission</term>
<term>Infrared emission spectrum</term>
<term>Infrared emissions</term>
<term>Infrared excitation</term>
<term>Ion</term>
<term>Irreducible representation</term>
<term>Laser beam</term>
<term>Line strength</term>
<term>Lowest component</term>
<term>Luminescence</term>
<term>Luminescence intensity</term>
<term>Matrix</term>
<term>Matrix element</term>
<term>Minor centers</term>
<term>Multiplet</term>
<term>Nominal concentration</term>
<term>Other hand</term>
<term>Overall splitting</term>
<term>Phys</term>
<term>Previous studies</term>
<term>Previous works</term>
<term>Radial integrals</term>
<term>Rate equations</term>
<term>Refractive index</term>
<term>Solid angle</term>
<term>Stark components</term>
<term>Stark levels</term>
<term>Symmetric pairs</term>
<term>Temperature results</term>
<term>Tentative estimation</term>
<term>Theoretical calculations</term>
<term>Ytterbium</term>
<term>Ytterbium ions</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorption coefficient</term>
<term>Absorption spectrum</term>
<term>Apte effect</term>
<term>Asymmetric</term>
<term>Asymmetric pairs</term>
<term>Asymmetric pairs concentration</term>
<term>Cooperative effect</term>
<term>Cooperative effects</term>
<term>Cooperative emission</term>
<term>Cooperative emission rate</term>
<term>Cooperative luminescence</term>
<term>Cooperative luminescence rate</term>
<term>Cooperative rate</term>
<term>Cooperative rate constants</term>
<term>Cooperative spectrum</term>
<term>Cooperative transitions</term>
<term>Cscdbr</term>
<term>Cubic symmetry</term>
<term>Divalent state</term>
<term>Electronic coulomb interaction</term>
<term>Electronic interaction</term>
<term>Electronic lines</term>
<term>Emission lines</term>
<term>Equal population</term>
<term>Excitation</term>
<term>Excitation spectrum</term>
<term>Excitation spectrum monitoring</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Experimental value</term>
<term>Extra line</term>
<term>Extra lines</term>
<term>Goldner</term>
<term>Good agreement</term>
<term>Ground state</term>
<term>Infrared emission</term>
<term>Infrared emission spectrum</term>
<term>Infrared emissions</term>
<term>Infrared excitation</term>
<term>Ion</term>
<term>Irreducible representation</term>
<term>Laser beam</term>
<term>Line strength</term>
<term>Lowest component</term>
<term>Luminescence</term>
<term>Luminescence intensity</term>
<term>Matrix</term>
<term>Matrix element</term>
<term>Minor centers</term>
<term>Multiplet</term>
<term>Nominal concentration</term>
<term>Other hand</term>
<term>Overall splitting</term>
<term>Phys</term>
<term>Previous studies</term>
<term>Previous works</term>
<term>Radial integrals</term>
<term>Rate equations</term>
<term>Refractive index</term>
<term>Solid angle</term>
<term>Stark components</term>
<term>Stark levels</term>
<term>Symmetric pairs</term>
<term>Temperature results</term>
<term>Tentative estimation</term>
<term>Theoretical calculations</term>
<term>Ytterbium</term>
<term>Ytterbium ions</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Under near infrared excitation, ytterbium-doped CsCdBr3 exhibits a strong blue luminescence due to a cooperative effect. The energy level scheme of Yb3+ ions has been determined at low temperature by spectroscopic measurements, allowing us to calculate the theoretical spectrum of the cooperative luminescence. The good agreement obtained with the experimental data confirms the process governing the anti-Stokes emission. We also present a comparison between theoretical and experimental cooperative luminescence rates which is of particular interest because trivalent ions enter this lattice to form pairs of fixed structure. Theoretical calculations of the cooperative luminescence probability are therefore much easier than in other compounds. The experimental cooperative rate constant is 0.13 s−1, whereas the dipole-quadrupole and forced dipole-dipole interactions result in a theoretical rate constant of approximately 0.70−1.6 × 10−2s−1 for symmetric pairs and 0.76−1.7 × 10−1s−1 for asymmetric ones. From a tentative estimation of asymmetric pairs concentration, we find a total cooperative rate constant between 2.2 × 10−2 and 5.0 × 10−2s−1. The agreement with experiment is considered to be reasonable since the radial integrals inserted in the theoretical calculations are not adjusted to experiment.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>luminescence</json:string>
<json:string>goldner</json:string>
<json:string>cscdbr</json:string>
<json:string>excitation</json:string>
<json:string>phys</json:string>
<json:string>ytterbium</json:string>
<json:string>cooperative luminescence</json:string>
<json:string>asymmetric pairs</json:string>
<json:string>multiplet</json:string>
<json:string>theoretical calculations</json:string>
<json:string>stark levels</json:string>
<json:string>cooperative rate</json:string>
<json:string>infrared excitation</json:string>
<json:string>ytterbium ions</json:string>
<json:string>cooperative luminescence rate</json:string>
<json:string>absorption spectrum</json:string>
<json:string>infrared emission spectrum</json:string>
<json:string>ground state</json:string>
<json:string>symmetric pairs</json:string>
<json:string>matrix</json:string>
<json:string>asymmetric</json:string>
<json:string>ion</json:string>
<json:string>infrared emission</json:string>
<json:string>radial integrals</json:string>
<json:string>emission lines</json:string>
<json:string>matrix element</json:string>
<json:string>electronic lines</json:string>
<json:string>cooperative effects</json:string>
<json:string>absorption coefficient</json:string>
<json:string>good agreement</json:string>
<json:string>experimental value</json:string>
<json:string>cooperative spectrum</json:string>
<json:string>previous studies</json:string>
<json:string>cubic symmetry</json:string>
<json:string>asymmetric pairs concentration</json:string>
<json:string>minor centers</json:string>
<json:string>experimental data</json:string>
<json:string>luminescence intensity</json:string>
<json:string>temperature results</json:string>
<json:string>extra lines</json:string>
<json:string>lowest component</json:string>
<json:string>cooperative effect</json:string>
<json:string>excitation spectrum</json:string>
<json:string>cooperative transitions</json:string>
<json:string>extra line</json:string>
<json:string>excitation spectrum monitoring</json:string>
<json:string>stark components</json:string>
<json:string>electronic coulomb interaction</json:string>
<json:string>tentative estimation</json:string>
<json:string>apte effect</json:string>
<json:string>cooperative emission</json:string>
<json:string>refractive index</json:string>
<json:string>electronic interaction</json:string>
<json:string>other hand</json:string>
<json:string>divalent state</json:string>
<json:string>line strength</json:string>
<json:string>equal population</json:string>
<json:string>infrared emissions</json:string>
<json:string>nominal concentration</json:string>
<json:string>rate equations</json:string>
<json:string>solid angle</json:string>
<json:string>laser beam</json:string>
<json:string>experimental results</json:string>
<json:string>previous works</json:string>
<json:string>irreducible representation</json:string>
<json:string>cooperative rate constants</json:string>
<json:string>cooperative emission rate</json:string>
<json:string>overall splitting</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Ph. Goldner</name>
<affiliations>
<json:string>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Pellé</name>
<affiliations>
<json:string>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Meichenin</name>
<affiliations>
<json:string>France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Auzel</name>
<affiliations>
<json:string>Correspondence address: France Telecom, CNET PAB Laboratoire Bagneux, 196 Avenue Henri-Ravera, BP 207, F-92225 Bagneux Cedex, France.</json:string>
<json:string>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cooperative luminescence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Ytterbium</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Pairs</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Yb3+:CsCdBr3</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Under near infrared excitation, ytterbium-doped CsCdBr3 exhibits a strong blue luminescence due to a cooperative effect. The energy level scheme of Yb3+ ions has been determined at low temperature by spectroscopic measurements, allowing us to calculate the theoretical spectrum of the cooperative luminescence. The good agreement obtained with the experimental data confirms the process governing the anti-Stokes emission. We also present a comparison between theoretical and experimental cooperative luminescence rates which is of particular interest because trivalent ions enter this lattice to form pairs of fixed structure. Theoretical calculations of the cooperative luminescence probability are therefore much easier than in other compounds. The experimental cooperative rate constant is 0.13 s−1, whereas the dipole-quadrupole and forced dipole-dipole interactions result in a theoretical rate constant of approximately 0.70−1.6 × 10−2s−1 for symmetric pairs and 0.76−1.7 × 10−1s−1 for asymmetric ones. From a tentative estimation of asymmetric pairs concentration, we find a total cooperative rate constant between 2.2 × 10−2 and 5.0 × 10−2s−1. The agreement with experiment is considered to be reasonable since the radial integrals inserted in the theoretical calculations are not adjusted to experiment.</abstract>
<qualityIndicators>
<score>7.208</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>540 x 720 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1313</abstractCharCount>
<pdfWordCount>5322</pdfWordCount>
<pdfCharCount>35115</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>184</abstractWordCount>
</qualityIndicators>
<title>Cooperative luminescence in ytterbium-doped CsCdBr3</title>
<pii>
<json:string>S0022-2313(96)00128-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Luminescence</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1997</publicationDate>
<issn>
<json:string>0022-2313</json:string>
</issn>
<pii>
<json:string>S0022-2313(00)X0023-3</json:string>
</pii>
<volume>71</volume>
<issue>2</issue>
<pages>
<first>137</first>
<last>150</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>optics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>physics & astronomy</json:string>
<json:string>applied physics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1997</publicationDate>
<copyrightDate>1997</copyrightDate>
<doi>
<json:string>10.1016/S0022-2313(96)00128-7</json:string>
</doi>
<id>E78EC7811E6B2721141B701BF4FCA272CC53BB4C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/E78EC7811E6B2721141B701BF4FCA272CC53BB4C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/E78EC7811E6B2721141B701BF4FCA272CC53BB4C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/E78EC7811E6B2721141B701BF4FCA272CC53BB4C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Cooperative luminescence in ytterbium-doped CsCdBr3</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1997</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Cooperative luminescence in ytterbium-doped CsCdBr3</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Ph.</forename>
<surname>Goldner</surname>
</persName>
<affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">F.</forename>
<surname>Pellé</surname>
</persName>
<affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">D.</forename>
<surname>Meichenin</surname>
</persName>
<affiliation>France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">F.</forename>
<surname>Auzel</surname>
</persName>
<affiliation>Correspondence address: France Telecom, CNET PAB Laboratoire Bagneux, 196 Avenue Henri-Ravera, BP 207, F-92225 Bagneux Cedex, France.</affiliation>
<affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</affiliation>
</author>
<idno type="istex">E78EC7811E6B2721141B701BF4FCA272CC53BB4C</idno>
<idno type="DOI">10.1016/S0022-2313(96)00128-7</idno>
<idno type="PII">S0022-2313(96)00128-7</idno>
</analytic>
<monogr>
<title level="j">Journal of Luminescence</title>
<title level="j" type="abbrev">LUMIN</title>
<idno type="pISSN">0022-2313</idno>
<idno type="PII">S0022-2313(00)X0023-3</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997"></date>
<biblScope unit="volume">71</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="137">137</biblScope>
<biblScope unit="page" to="150">150</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1997</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Under near infrared excitation, ytterbium-doped CsCdBr3 exhibits a strong blue luminescence due to a cooperative effect. The energy level scheme of Yb3+ ions has been determined at low temperature by spectroscopic measurements, allowing us to calculate the theoretical spectrum of the cooperative luminescence. The good agreement obtained with the experimental data confirms the process governing the anti-Stokes emission. We also present a comparison between theoretical and experimental cooperative luminescence rates which is of particular interest because trivalent ions enter this lattice to form pairs of fixed structure. Theoretical calculations of the cooperative luminescence probability are therefore much easier than in other compounds. The experimental cooperative rate constant is 0.13 s−1, whereas the dipole-quadrupole and forced dipole-dipole interactions result in a theoretical rate constant of approximately 0.70−1.6 × 10−2s−1 for symmetric pairs and 0.76−1.7 × 10−1s−1 for asymmetric ones. From a tentative estimation of asymmetric pairs concentration, we find a total cooperative rate constant between 2.2 × 10−2 and 5.0 × 10−2s−1. The agreement with experiment is considered to be reasonable since the radial integrals inserted in the theoretical calculations are not adjusted to experiment.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Cooperative luminescence</term>
</item>
<item>
<term>Ytterbium</term>
</item>
<item>
<term>Pairs</term>
</item>
<item>
<term>Yb3+:CsCdBr3</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1996-09-23">Modified</change>
<change when="1997">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/E78EC7811E6B2721141B701BF4FCA272CC53BB4C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>LUMIN</jid>
<aid>96001287</aid>
<ce:pii>S0022-2313(96)00128-7</ce:pii>
<ce:doi>10.1016/S0022-2313(96)00128-7</ce:doi>
<ce:copyright type="unknown" year="1997"></ce:copyright>
</item-info>
<head>
<ce:title>Cooperative luminescence in ytterbium-doped CsCdBr
<ce:inf>3</ce:inf>
</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Ph.</ce:given-name>
<ce:surname>Goldner</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>F.</ce:given-name>
<ce:surname>Pellé</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>D.</ce:given-name>
<ce:surname>Meichenin</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>F.</ce:given-name>
<ce:surname>Auzel</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Correspondence address: France Telecom, CNET PAB Laboratoire Bagneux, 196 Avenue Henri-Ravera, BP 207, F-92225 Bagneux Cedex, France.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="19" month="8" year="1996"></ce:date-received>
<ce:date-revised day="23" month="9" year="1996"></ce:date-revised>
<ce:date-accepted day="24" month="9" year="1996"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Under near infrared excitation, ytterbium-doped CsCdBr
<ce:inf>3</ce:inf>
exhibits a strong blue luminescence due to a cooperative effect. The energy level scheme of Yb
<ce:sup>3+</ce:sup>
ions has been determined at low temperature by spectroscopic measurements, allowing us to calculate the theoretical spectrum of the cooperative luminescence. The good agreement obtained with the experimental data confirms the process governing the anti-Stokes emission. We also present a comparison between theoretical and experimental cooperative luminescence rates which is of particular interest because trivalent ions enter this lattice to form pairs of fixed structure. Theoretical calculations of the cooperative luminescence probability are therefore much easier than in other compounds. The experimental cooperative rate constant is 0.13 s
<ce:sup>−1</ce:sup>
, whereas the dipole-quadrupole and forced dipole-dipole interactions result in a theoretical rate constant of approximately 0.70−1.6 × 10
<ce:sup>−2</ce:sup>
s
<ce:sup>−1</ce:sup>
for symmetric pairs and 0.76−1.7 × 10
<ce:sup>−1</ce:sup>
s
<ce:sup>−1</ce:sup>
for asymmetric ones. From a tentative estimation of asymmetric pairs concentration, we find a total cooperative rate constant between 2.2 × 10
<ce:sup>−2</ce:sup>
and 5.0 × 10
<ce:sup>−2</ce:sup>
s
<ce:sup>−1</ce:sup>
. The agreement with experiment is considered to be reasonable since the radial integrals inserted in the theoretical calculations are not adjusted to experiment.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Cooperative luminescence</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Ytterbium</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Pairs</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Yb
<ce:sup>3+</ce:sup>
:CsCdBr
<ce:inf>3</ce:inf>
</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Cooperative luminescence in ytterbium-doped CsCdBr3</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Cooperative luminescence in ytterbium-doped CsCdBr</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ph.</namePart>
<namePart type="family">Goldner</namePart>
<affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Pellé</namePart>
<affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Meichenin</namePart>
<affiliation>France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Auzel</namePart>
<affiliation>Correspondence address: France Telecom, CNET PAB Laboratoire Bagneux, 196 Avenue Henri-Ravera, BP 207, F-92225 Bagneux Cedex, France.</affiliation>
<affiliation>Groupe d'Optique des Terres Rares France Telecom CNET/PAB/BAG, BP 107, F-92225 Bagneux, France and Laboratoire de Physico-Chimie des Matériaux, CNRS UPR 211 1, Pl. A. Briand, F-92190 Meudon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1997</dateIssued>
<dateModified encoding="w3cdtf">1996-09-23</dateModified>
<copyrightDate encoding="w3cdtf">1997</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Under near infrared excitation, ytterbium-doped CsCdBr3 exhibits a strong blue luminescence due to a cooperative effect. The energy level scheme of Yb3+ ions has been determined at low temperature by spectroscopic measurements, allowing us to calculate the theoretical spectrum of the cooperative luminescence. The good agreement obtained with the experimental data confirms the process governing the anti-Stokes emission. We also present a comparison between theoretical and experimental cooperative luminescence rates which is of particular interest because trivalent ions enter this lattice to form pairs of fixed structure. Theoretical calculations of the cooperative luminescence probability are therefore much easier than in other compounds. The experimental cooperative rate constant is 0.13 s−1, whereas the dipole-quadrupole and forced dipole-dipole interactions result in a theoretical rate constant of approximately 0.70−1.6 × 10−2s−1 for symmetric pairs and 0.76−1.7 × 10−1s−1 for asymmetric ones. From a tentative estimation of asymmetric pairs concentration, we find a total cooperative rate constant between 2.2 × 10−2 and 5.0 × 10−2s−1. The agreement with experiment is considered to be reasonable since the radial integrals inserted in the theoretical calculations are not adjusted to experiment.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Cooperative luminescence</topic>
<topic>Ytterbium</topic>
<topic>Pairs</topic>
<topic>Yb3+:CsCdBr3</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Luminescence</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>LUMIN</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199703</dateIssued>
</originInfo>
<identifier type="ISSN">0022-2313</identifier>
<identifier type="PII">S0022-2313(00)X0023-3</identifier>
<part>
<date>199703</date>
<detail type="volume">
<number>71</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>93</start>
<end>188</end>
</extent>
<extent unit="pages">
<start>137</start>
<end>150</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">E78EC7811E6B2721141B701BF4FCA272CC53BB4C</identifier>
<identifier type="ark">ark:/67375/6H6-F7F6FPFD-R</identifier>
<identifier type="DOI">10.1016/S0022-2313(96)00128-7</identifier>
<identifier type="PII">S0022-2313(96)00128-7</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/E78EC7811E6B2721141B701BF4FCA272CC53BB4C/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003311 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003311 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E78EC7811E6B2721141B701BF4FCA272CC53BB4C
   |texte=   Cooperative luminescence in ytterbium-doped CsCdBr3
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024