Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photon‐echo quantum memory in solid state systems

Identifieur interne : 002963 ( Istex/Corpus ); précédent : 002962; suivant : 002964

Photon‐echo quantum memory in solid state systems

Auteurs : W. Tittel ; M. Afzelius ; T. Chaneliére ; R. L. Cone ; S. Kröll ; S. A. Moiseev ; M. Sellars

Source :

RBID : ISTEX:BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39

English descriptors

Abstract

Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, we review research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, we describe the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory. We present a simple theoretical description of the ideal protocol, and comment on the impact of a non‐ideal realization on its quantum nature. We extensively discuss rare‐earth‐ion doped crystals and glasses as material candidates, elaborate on traditional photon‐echo experiments as a test‐bed for quantum state storage, and describe the current state‐of‐the‐art of photon‐echo quantum memory. Finally, we give a brief outlook on current research.

Url:
DOI: 10.1002/lpor.200810056

Links to Exploration step

ISTEX:BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photon‐echo quantum memory in solid state systems</title>
<author>
<name sortKey="Tittel, W" sort="Tittel, W" uniqKey="Tittel W" first="W." last="Tittel">W. Tittel</name>
<affiliation>
<mods:affiliation>E-mail: wtittel@qis.ucalgary.ca</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wtittel@qis.ucalgary.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Afzelius, M" sort="Afzelius, M" uniqKey="Afzelius M" first="M." last="Afzelius">M. Afzelius</name>
<affiliation>
<mods:affiliation>Group of Applied Physics, University of Geneva, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chaneliere, T" sort="Chaneliere, T" uniqKey="Chaneliere T" first="T." last="Chaneliére">T. Chaneliére</name>
<affiliation>
<mods:affiliation>Laboratoire Aimé Cotton, CNRS‐UPR 3321, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cone, R L" sort="Cone, R L" uniqKey="Cone R" first="R. L." last="Cone">R. L. Cone</name>
<affiliation>
<mods:affiliation>Department of Physics, Montana State University, Bozeman, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kroll, S" sort="Kroll, S" uniqKey="Kroll S" first="S." last="Kröll">S. Kröll</name>
<affiliation>
<mods:affiliation>Department of Physics, Lund University, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moiseev, S A" sort="Moiseev, S A" uniqKey="Moiseev S" first="S. A." last="Moiseev">S. A. Moiseev</name>
<affiliation>
<mods:affiliation>Institute for Quantum Information Science & Department of Physics and Astronomy, University of Calgary, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Kazan Physical‐Technical Institute of the Russian Academy of Sciences, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sellars, M" sort="Sellars, M" uniqKey="Sellars M" first="M." last="Sellars">M. Sellars</name>
<affiliation>
<mods:affiliation>Laser Physics Centre, Australian National University, Canberra, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/lpor.200810056</idno>
<idno type="url">https://api.istex.fr/document/BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002963</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002963</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Photon‐echo quantum memory in solid state systems</title>
<author>
<name sortKey="Tittel, W" sort="Tittel, W" uniqKey="Tittel W" first="W." last="Tittel">W. Tittel</name>
<affiliation>
<mods:affiliation>E-mail: wtittel@qis.ucalgary.ca</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wtittel@qis.ucalgary.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Afzelius, M" sort="Afzelius, M" uniqKey="Afzelius M" first="M." last="Afzelius">M. Afzelius</name>
<affiliation>
<mods:affiliation>Group of Applied Physics, University of Geneva, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chaneliere, T" sort="Chaneliere, T" uniqKey="Chaneliere T" first="T." last="Chaneliére">T. Chaneliére</name>
<affiliation>
<mods:affiliation>Laboratoire Aimé Cotton, CNRS‐UPR 3321, Orsay, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cone, R L" sort="Cone, R L" uniqKey="Cone R" first="R. L." last="Cone">R. L. Cone</name>
<affiliation>
<mods:affiliation>Department of Physics, Montana State University, Bozeman, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kroll, S" sort="Kroll, S" uniqKey="Kroll S" first="S." last="Kröll">S. Kröll</name>
<affiliation>
<mods:affiliation>Department of Physics, Lund University, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moiseev, S A" sort="Moiseev, S A" uniqKey="Moiseev S" first="S. A." last="Moiseev">S. A. Moiseev</name>
<affiliation>
<mods:affiliation>Institute for Quantum Information Science & Department of Physics and Astronomy, University of Calgary, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Kazan Physical‐Technical Institute of the Russian Academy of Sciences, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sellars, M" sort="Sellars, M" uniqKey="Sellars M" first="M." last="Sellars">M. Sellars</name>
<affiliation>
<mods:affiliation>Laser Physics Centre, Australian National University, Canberra, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Laser & Photonics Reviews</title>
<title level="j" type="alt">LASER PHOTONICS REVIEWS</title>
<idno type="ISSN">1863-8880</idno>
<idno type="eISSN">1863-8899</idno>
<imprint>
<biblScope unit="vol">4</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="244">244</biblScope>
<biblScope unit="page" to="267">267</biblScope>
<biblScope unit="page-count">24</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2010-02-20">2010-02-20</date>
</imprint>
<idno type="ISSN">1863-8880</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1863-8880</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorber</term>
<term>Absorption line</term>
<term>Adjacent nodes</term>
<term>Afzelius</term>
<term>Atomic coherence</term>
<term>Atomic ensembles</term>
<term>Atomic medium</term>
<term>Bozeman</term>
<term>Cambridge university press</term>
<term>Chaneli</term>
<term>Cirac</term>
<term>Coherence</term>
<term>Coherence times</term>
<term>Coherent superposition</term>
<term>Crib</term>
<term>Cryptography</term>
<term>Data pulse</term>
<term>Data pulses</term>
<term>Data sequence</term>
<term>Data storage</term>
<term>Decoherence</term>
<term>Delity</term>
<term>Dipole moments</term>
<term>Doped</term>
<term>Doped crystals</term>
<term>Doped solids</term>
<term>Eld</term>
<term>Entangled</term>
<term>Entangled photon pairs</term>
<term>Entanglement</term>
<term>Entangling</term>
<term>Entangling operation</term>
<term>Envelope functions</term>
<term>Equall</term>
<term>Gisin</term>
<term>Gmbh</term>
<term>Ground state</term>
<term>Historical development</term>
<term>Homogeneous linewidth</term>
<term>Host material</term>
<term>Inhomogeneous</term>
<term>Inhomogeneously</term>
<term>Input pulse</term>
<term>Input state</term>
<term>January</term>
<term>John wiley sons</term>
<term>Kgaa</term>
<term>Lambda systems</term>
<term>Laser</term>
<term>Laser photon</term>
<term>Lett</term>
<term>Level structure</term>
<term>Linbo3</term>
<term>Linewidth</term>
<term>Linewidths</term>
<term>Long distances</term>
<term>Longdell</term>
<term>Longitudinal</term>
<term>Lumin</term>
<term>Lund university</term>
<term>Macfarlane</term>
<term>Moiseev</term>
<term>Nature physics</term>
<term>Node</term>
<term>Online</term>
<term>Online color</term>
<term>Optical depth</term>
<term>Optical pulses</term>
<term>Optical storage</term>
<term>Optical transition</term>
<term>Optical transitions</term>
<term>Optics</term>
<term>Particular interest</term>
<term>Phase coherence</term>
<term>Phase shift</term>
<term>Photon</term>
<term>Photonic</term>
<term>Phys</term>
<term>Probability amplitude</term>
<term>Protocol</term>
<term>Pulse</term>
<term>Quantum</term>
<term>Quantum channel</term>
<term>Quantum communication</term>
<term>Quantum cryptography</term>
<term>Quantum information</term>
<term>Quantum memories</term>
<term>Quantum memory</term>
<term>Quantum memory protocol</term>
<term>Quantum repeater</term>
<term>Quantum repeaters</term>
<term>Quantum state</term>
<term>Quantum state storage</term>
<term>Quantum states</term>
<term>Qubit</term>
<term>Qubits</term>
<term>Rare earth</term>
<term>Recent review</term>
<term>Repeater</term>
<term>Riedmatten</term>
<term>Second pulse</term>
<term>Sect</term>
<term>Sellars</term>
<term>Single photons</term>
<term>Single qubit</term>
<term>Sio5</term>
<term>Solid state systems</term>
<term>Solid state systems figure</term>
<term>Spectral diffusion</term>
<term>Spectral hole</term>
<term>Staudt</term>
<term>Storage process</term>
<term>Storage time</term>
<term>Superposition</term>
<term>Teleportation</term>
<term>Thiel</term>
<term>Tittel</term>
<term>Ttger</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Zbinden</term>
<term>Zhang</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorber</term>
<term>Absorption line</term>
<term>Adjacent nodes</term>
<term>Afzelius</term>
<term>Atomic coherence</term>
<term>Atomic ensembles</term>
<term>Atomic medium</term>
<term>Bozeman</term>
<term>Cambridge university press</term>
<term>Chaneli</term>
<term>Cirac</term>
<term>Coherence</term>
<term>Coherence times</term>
<term>Coherent superposition</term>
<term>Crib</term>
<term>Cryptography</term>
<term>Data pulse</term>
<term>Data pulses</term>
<term>Data sequence</term>
<term>Data storage</term>
<term>Decoherence</term>
<term>Delity</term>
<term>Dipole moments</term>
<term>Doped</term>
<term>Doped crystals</term>
<term>Doped solids</term>
<term>Eld</term>
<term>Entangled</term>
<term>Entangled photon pairs</term>
<term>Entanglement</term>
<term>Entangling</term>
<term>Entangling operation</term>
<term>Envelope functions</term>
<term>Equall</term>
<term>Gisin</term>
<term>Gmbh</term>
<term>Ground state</term>
<term>Historical development</term>
<term>Homogeneous linewidth</term>
<term>Host material</term>
<term>Inhomogeneous</term>
<term>Inhomogeneously</term>
<term>Input pulse</term>
<term>Input state</term>
<term>January</term>
<term>John wiley sons</term>
<term>Kgaa</term>
<term>Lambda systems</term>
<term>Laser</term>
<term>Laser photon</term>
<term>Lett</term>
<term>Level structure</term>
<term>Linbo3</term>
<term>Linewidth</term>
<term>Linewidths</term>
<term>Long distances</term>
<term>Longdell</term>
<term>Longitudinal</term>
<term>Lumin</term>
<term>Lund university</term>
<term>Macfarlane</term>
<term>Moiseev</term>
<term>Nature physics</term>
<term>Node</term>
<term>Online</term>
<term>Online color</term>
<term>Optical depth</term>
<term>Optical pulses</term>
<term>Optical storage</term>
<term>Optical transition</term>
<term>Optical transitions</term>
<term>Optics</term>
<term>Particular interest</term>
<term>Phase coherence</term>
<term>Phase shift</term>
<term>Photon</term>
<term>Photonic</term>
<term>Phys</term>
<term>Probability amplitude</term>
<term>Protocol</term>
<term>Pulse</term>
<term>Quantum</term>
<term>Quantum channel</term>
<term>Quantum communication</term>
<term>Quantum cryptography</term>
<term>Quantum information</term>
<term>Quantum memories</term>
<term>Quantum memory</term>
<term>Quantum memory protocol</term>
<term>Quantum repeater</term>
<term>Quantum repeaters</term>
<term>Quantum state</term>
<term>Quantum state storage</term>
<term>Quantum states</term>
<term>Qubit</term>
<term>Qubits</term>
<term>Rare earth</term>
<term>Recent review</term>
<term>Repeater</term>
<term>Riedmatten</term>
<term>Second pulse</term>
<term>Sect</term>
<term>Sellars</term>
<term>Single photons</term>
<term>Single qubit</term>
<term>Sio5</term>
<term>Solid state systems</term>
<term>Solid state systems figure</term>
<term>Spectral diffusion</term>
<term>Spectral hole</term>
<term>Staudt</term>
<term>Storage process</term>
<term>Storage time</term>
<term>Superposition</term>
<term>Teleportation</term>
<term>Thiel</term>
<term>Tittel</term>
<term>Ttger</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Zbinden</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, we review research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, we describe the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory. We present a simple theoretical description of the ideal protocol, and comment on the impact of a non‐ideal realization on its quantum nature. We extensively discuss rare‐earth‐ion doped crystals and glasses as material candidates, elaborate on traditional photon‐echo experiments as a test‐bed for quantum state storage, and describe the current state‐of‐the‐art of photon‐echo quantum memory. Finally, we give a brief outlook on current research.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>phys</json:string>
<json:string>photon</json:string>
<json:string>lett</json:string>
<json:string>quantum memory</json:string>
<json:string>tittel</json:string>
<json:string>laser</json:string>
<json:string>qubit</json:string>
<json:string>verlag</json:string>
<json:string>verlag gmbh</json:string>
<json:string>weinheim</json:string>
<json:string>gmbh</json:string>
<json:string>kgaa</json:string>
<json:string>gisin</json:string>
<json:string>delity</json:string>
<json:string>afzelius</json:string>
<json:string>quantum</json:string>
<json:string>macfarlane</json:string>
<json:string>node</json:string>
<json:string>entanglement</json:string>
<json:string>quantum repeater</json:string>
<json:string>quantum communication</json:string>
<json:string>repeater</json:string>
<json:string>quantum information</json:string>
<json:string>storage time</json:string>
<json:string>moiseev</json:string>
<json:string>qubits</json:string>
<json:string>eld</json:string>
<json:string>sio5</json:string>
<json:string>inhomogeneously</json:string>
<json:string>riedmatten</json:string>
<json:string>online</json:string>
<json:string>entangled</json:string>
<json:string>coherence</json:string>
<json:string>online color</json:string>
<json:string>quantum state</json:string>
<json:string>sellars</json:string>
<json:string>linewidth</json:string>
<json:string>thiel</json:string>
<json:string>doped crystals</json:string>
<json:string>inhomogeneous</json:string>
<json:string>zbinden</json:string>
<json:string>decoherence</json:string>
<json:string>cryptography</json:string>
<json:string>laser photon</json:string>
<json:string>linbo3</json:string>
<json:string>doped</json:string>
<json:string>quantum memories</json:string>
<json:string>lumin</json:string>
<json:string>cirac</json:string>
<json:string>atomic coherence</json:string>
<json:string>quantum state storage</json:string>
<json:string>staudt</json:string>
<json:string>zhang</json:string>
<json:string>optical depth</json:string>
<json:string>january</json:string>
<json:string>equall</json:string>
<json:string>homogeneous linewidth</json:string>
<json:string>quantum repeaters</json:string>
<json:string>longdell</json:string>
<json:string>bozeman</json:string>
<json:string>solid state systems</json:string>
<json:string>chaneli</json:string>
<json:string>linewidths</json:string>
<json:string>entangling</json:string>
<json:string>photonic</json:string>
<json:string>teleportation</json:string>
<json:string>absorption line</json:string>
<json:string>data storage</json:string>
<json:string>quantum states</json:string>
<json:string>data pulse</json:string>
<json:string>quantum cryptography</json:string>
<json:string>particular interest</json:string>
<json:string>optical transition</json:string>
<json:string>absorber</json:string>
<json:string>pulse</json:string>
<json:string>superposition</json:string>
<json:string>spectral hole</json:string>
<json:string>single photons</json:string>
<json:string>data pulses</json:string>
<json:string>ground state</json:string>
<json:string>long distances</json:string>
<json:string>optical pulses</json:string>
<json:string>entangling operation</json:string>
<json:string>doped solids</json:string>
<json:string>probability amplitude</json:string>
<json:string>atomic medium</json:string>
<json:string>recent review</json:string>
<json:string>adjacent nodes</json:string>
<json:string>entangled photon pairs</json:string>
<json:string>lund university</json:string>
<json:string>coherence times</json:string>
<json:string>spectral diffusion</json:string>
<json:string>phase coherence</json:string>
<json:string>data sequence</json:string>
<json:string>sect</json:string>
<json:string>longitudinal</json:string>
<json:string>protocol</json:string>
<json:string>optics</json:string>
<json:string>crib</json:string>
<json:string>atomic ensembles</json:string>
<json:string>level structure</json:string>
<json:string>phase shift</json:string>
<json:string>input state</json:string>
<json:string>second pulse</json:string>
<json:string>quantum memory protocol</json:string>
<json:string>host material</json:string>
<json:string>historical development</json:string>
<json:string>lambda systems</json:string>
<json:string>storage process</json:string>
<json:string>coherent superposition</json:string>
<json:string>solid state systems figure</json:string>
<json:string>cambridge university press</json:string>
<json:string>optical transitions</json:string>
<json:string>john wiley sons</json:string>
<json:string>quantum channel</json:string>
<json:string>single qubit</json:string>
<json:string>optical storage</json:string>
<json:string>nature physics</json:string>
<json:string>rare earth</json:string>
<json:string>input pulse</json:string>
<json:string>envelope functions</json:string>
<json:string>dipole moments</json:string>
<json:string>ttger</json:string>
<json:string>montana</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>W. Tittel</name>
<affiliations>
<json:string>E-mail: wtittel@qis.ucalgary.ca</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Afzelius</name>
<affiliations>
<json:string>Group of Applied Physics, University of Geneva, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. Chaneliére</name>
<affiliations>
<json:string>Laboratoire Aimé Cotton, CNRS‐UPR 3321, Orsay, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>R.L. Cone</name>
<affiliations>
<json:string>Department of Physics, Montana State University, Bozeman, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Kröll</name>
<affiliations>
<json:string>Department of Physics, Lund University, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>S.A. Moiseev</name>
<affiliations>
<json:string>Institute for Quantum Information Science & Department of Physics and Astronomy, University of Calgary, Canada</json:string>
<json:string>Kazan Physical‐Technical Institute of the Russian Academy of Sciences, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Sellars</name>
<affiliations>
<json:string>Laser Physics Centre, Australian National University, Canberra, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Quantum memory</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>quantum repeater</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>quantum communication</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>photon‐echo</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rare‐earth‐ions.</value>
</json:item>
</subject>
<articleId>
<json:string>LPOR200810056</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, we review research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, we describe the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory. We present a simple theoretical description of the ideal protocol, and comment on the impact of a non‐ideal realization on its quantum nature. We extensively discuss rare‐earth‐ion doped crystals and glasses as material candidates, elaborate on traditional photon‐echo experiments as a test‐bed for quantum state storage, and describe the current state‐of‐the‐art of photon‐echo quantum memory. Finally, we give a brief outlook on current research.</abstract>
<qualityIndicators>
<score>7.312</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595.276 x 841.89 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1044</abstractCharCount>
<pdfWordCount>17590</pdfWordCount>
<pdfCharCount>100089</pdfCharCount>
<pdfPageCount>24</pdfPageCount>
<abstractWordCount>151</abstractWordCount>
</qualityIndicators>
<title>Photon‐echo quantum memory in solid state systems</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Laser & Photonics Reviews</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1863-8899</json:string>
</doi>
<issn>
<json:string>1863-8880</json:string>
</issn>
<eissn>
<json:string>1863-8899</json:string>
</eissn>
<publisherId>
<json:string>LPOR</json:string>
</publisherId>
<volume>4</volume>
<issue>2</issue>
<pages>
<first>244</first>
<last>267</last>
<total>24</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Editor's Choice</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>physics, condensed matter</json:string>
<json:string>physics, applied</json:string>
<json:string>optics</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>optoelectronics & photonics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>physique</json:string>
<json:string>etat condense: structure electronique, proprietes electriques, magnetiques et optiques</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/lpor.200810056</json:string>
</doi>
<id>BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Photon‐echo quantum memory in solid state systems</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<availability>
<licence>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</licence>
</availability>
<date type="published" when="2010-02-20"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Photon‐echo quantum memory in solid state systems</title>
<author xml:id="author-0000">
<persName>
<forename type="first">W.</forename>
<surname>Tittel</surname>
</persName>
<email>wtittel@qis.ucalgary.ca</email>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">M.</forename>
<surname>Afzelius</surname>
</persName>
<affiliation>Group of Applied Physics, University of Geneva, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">T.</forename>
<surname>Chaneliére</surname>
</persName>
<affiliation>Laboratoire Aimé Cotton, CNRS‐UPR 3321, Orsay, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">R.L.</forename>
<surname>Cone</surname>
</persName>
<affiliation>Department of Physics, Montana State University, Bozeman, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">S.</forename>
<surname>Kröll</surname>
</persName>
<affiliation>Department of Physics, Lund University, Sweden
<address>
<country key="SE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">S.A.</forename>
<surname>Moiseev</surname>
</persName>
<affiliation>Institute for Quantum Information Science & Department of Physics and Astronomy, University of Calgary, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
<affiliation>Kazan Physical‐Technical Institute of the Russian Academy of Sciences, Russia
<address>
<country key="RU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">M.</forename>
<surname>Sellars</surname>
</persName>
<affiliation>Laser Physics Centre, Australian National University, Canberra, Australia
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<idno type="istex">BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39</idno>
<idno type="ark">ark:/67375/WNG-F54L6WM6-N</idno>
<idno type="DOI">10.1002/lpor.200810056</idno>
<idno type="unit">LPOR200810056</idno>
<idno type="toTypesetVersion">file:LPOR.LPOR200810056.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Laser & Photonics Reviews</title>
<title level="j" type="alt">LASER PHOTONICS REVIEWS</title>
<idno type="pISSN">1863-8880</idno>
<idno type="eISSN">1863-8899</idno>
<idno type="book-DOI">10.1002/(ISSN)1863-8899</idno>
<idno type="book-part-DOI">10.1002/lpor.v4:2</idno>
<idno type="product">LPOR</idno>
<imprint>
<biblScope unit="vol">4</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="244">244</biblScope>
<biblScope unit="page" to="267">267</biblScope>
<biblScope unit="page-count">24</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2010-02-20"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, we review research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, we describe the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory. We present a simple theoretical description of the ideal protocol, and comment on the impact of a non‐ideal realization on its quantum nature. We extensively discuss rare‐earth‐ion doped crystals and glasses as material candidates, elaborate on traditional photon‐echo experiments as a test‐bed for quantum state storage, and describe the current state‐of‐the‐art of photon‐echo quantum memory. Finally, we give a brief outlook on current research.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, this article reviews research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory is described. Rare‐earth‐ion doped crystals and glasses are discussed as material candidates as well as traditional photon‐echo experiments as a test‐bed for quantum state storage.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:18638880:media:LPOR200810056:content"></media>
<media mimeType="image/gif" url="" rendition="webLoRes"></media>
<media mimeType="image/gif" url="" rendition="webOriginal"></media>
<media mimeType="image/gif" url="" rendition="webHiRes"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">Quantum memory</term>
<term xml:id="kwd2">quantum repeater</term>
<term xml:id="kwd3">quantum communication</term>
<term xml:id="kwd4">photon‐echo</term>
<term xml:id="kwd5">rare‐earth‐ions.</term>
</keywords>
<keywords rend="articleCategory">
<term>Editor's Choice</term>
</keywords>
<keywords rend="tocHeading1">
<term>Editor's Choice</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Berlin</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1863-8899</doi>
<issn type="print">1863-8880</issn>
<issn type="electronic">1863-8899</issn>
<idGroup>
<id type="product" value="LPOR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="LASER PHOTONICS REVIEWS">Laser & Photonics Reviews</title>
<title type="short">Laser & Photon. Rev.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/lpor.v4:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="4">4</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2010-02-20">February 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="10" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/lpor.200810056</doi>
<idGroup>
<id type="unit" value="LPOR200810056"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="24"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Editor's Choice</title>
<title type="tocHeading1">Editor's Choice</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-09-30"></event>
<event type="manuscriptRevised" date="2009-01-30"></event>
<event type="manuscriptAccepted" date="2009-02-18"></event>
<event type="firstOnline" date="2009-03-23"></event>
<event type="publishedOnlineFinalForm" date="2010-02-17"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.15 mode:FullText source:HeaderRef result:HeaderRef" date="2010-07-21"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">244</numbering>
<numbering type="pageLast">267</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:LPOR.LPOR200810056.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="13"></count>
<count type="referenceTotal" number="200"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Photon‐echo quantum memory in solid state systems</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author">
<personName>
<givenNames>W.</givenNames>
<familyName>Tittel</familyName>
</personName>
<contactDetails>
<email>wtittel@qis.ucalgary.ca</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>M.</givenNames>
<familyName>Afzelius</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#a3">
<personName>
<givenNames>T.</givenNames>
<familyName>Chaneliére</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#a4">
<personName>
<givenNames>R.L.</givenNames>
<familyName>Cone</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#a5">
<personName>
<givenNames>S.</givenNames>
<familyName>Kröll</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#a1 #a6">
<personName>
<givenNames>S.A.</givenNames>
<familyName>Moiseev</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#a7">
<personName>
<givenNames>M.</givenNames>
<familyName>Sellars</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="CA" type="organization">
<unparsedAffiliation>Institute for Quantum Information Science & Department of Physics and Astronomy, University of Calgary, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="CH" type="organization">
<unparsedAffiliation>Group of Applied Physics, University of Geneva, Switzerland</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire Aimé Cotton, CNRS‐UPR 3321, Orsay, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="US" type="organization">
<unparsedAffiliation>Department of Physics, Montana State University, Bozeman, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="SE" type="organization">
<unparsedAffiliation>Department of Physics, Lund University, Sweden</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6" countryCode="RU" type="organization">
<unparsedAffiliation>Kazan Physical‐Technical Institute of the Russian Academy of Sciences, Russia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a7" countryCode="AU" type="organization">
<unparsedAffiliation>Laser Physics Centre, Australian National University, Canberra, Australia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Quantum memory</keyword>
<keyword xml:id="kwd2">quantum repeater</keyword>
<keyword xml:id="kwd3">quantum communication</keyword>
<keyword xml:id="kwd4">photon‐echo</keyword>
<keyword xml:id="kwd5">rare‐earth‐ions.</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Natural Sciences and Engineering Research Council of Canada (NSERC)</fundingAgency>
<fundingNumber>General Dynamics Canada</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Alberta's Informatics Circle of Research Excellence (iCORE)</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Swiss NCCR Quantum Photonics</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>European Commission</fundingAgency>
<fundingNumber>QAP</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>U. S. Air Force Research Laboratory (US Air Force Office of Scientific Research)</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>U. S. Army Research Office</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Montana Board of Research and Commercialization Technology</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Royal Swedish Academy of Science</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Swedish Research Council</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Russian Foundation for Basic Research</fundingAgency>
<fundingNumber>06021682</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, we review research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, we describe the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory. We present a simple theoretical description of the ideal protocol, and comment on the impact of a non‐ideal realization on its quantum nature. We extensively discuss rare‐earth‐ion doped crystals and glasses as material candidates, elaborate on traditional photon‐echo experiments as a test‐bed for quantum state storage, and describe the current state‐of‐the‐art of photon‐echo quantum memory. Finally, we give a brief outlook on current research.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, this article reviews research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory is described. Rare‐earth‐ion doped crystals and glasses are discussed as material candidates as well as traditional photon‐echo experiments as a test‐bed for quantum state storage.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="WILEY-VCH" href="urn:x-wiley:18638880:media:LPOR200810056:content"></mediaResource>
<mediaResource alt="thumbnail image" rendition="webLoRes" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="original image" rendition="webOriginal" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="magnified image" rendition="webHiRes" mimeType="image/gif" href=""></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Photon‐echo quantum memory in solid state systems</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Photon‐echo quantum memory in solid state systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">W.</namePart>
<namePart type="family">Tittel</namePart>
<affiliation>E-mail: wtittel@qis.ucalgary.ca</affiliation>
<affiliation>E-mail: wtittel@qis.ucalgary.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Afzelius</namePart>
<affiliation>Group of Applied Physics, University of Geneva, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Chaneliére</namePart>
<affiliation>Laboratoire Aimé Cotton, CNRS‐UPR 3321, Orsay, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.L.</namePart>
<namePart type="family">Cone</namePart>
<affiliation>Department of Physics, Montana State University, Bozeman, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Kröll</namePart>
<affiliation>Department of Physics, Lund University, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.A.</namePart>
<namePart type="family">Moiseev</namePart>
<affiliation>Institute for Quantum Information Science & Department of Physics and Astronomy, University of Calgary, Canada</affiliation>
<affiliation>Kazan Physical‐Technical Institute of the Russian Academy of Sciences, Russia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Sellars</namePart>
<affiliation>Laser Physics Centre, Australian National University, Canberra, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Berlin</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-02-20</dateIssued>
<dateCaptured encoding="w3cdtf">2008-09-30</dateCaptured>
<dateValid encoding="w3cdtf">2009-02-18</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">13</extent>
<extent unit="references">200</extent>
</physicalDescription>
<abstract lang="en">Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, we review research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, we describe the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory. We present a simple theoretical description of the ideal protocol, and comment on the impact of a non‐ideal realization on its quantum nature. We extensively discuss rare‐earth‐ion doped crystals and glasses as material candidates, elaborate on traditional photon‐echo experiments as a test‐bed for quantum state storage, and describe the current state‐of‐the‐art of photon‐echo quantum memory. Finally, we give a brief outlook on current research.</abstract>
<abstract type="graphical" lang="en">Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, this article reviews research related to quantum memory based on a photon‐echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, the historical development from spin echoes, discovered in 1950, to photon‐echo quantum memory is described. Rare‐earth‐ion doped crystals and glasses are discussed as material candidates as well as traditional photon‐echo experiments as a test‐bed for quantum state storage.</abstract>
<note type="funding">Natural Sciences and Engineering Research Council of Canada (NSERC) - No. General Dynamics Canada; </note>
<note type="funding">Alberta's Informatics Circle of Research Excellence (iCORE)</note>
<note type="funding">Swiss NCCR Quantum Photonics</note>
<note type="funding">European Commission - No. QAP; </note>
<note type="funding">U. S. Air Force Research Laboratory (US Air Force Office of Scientific Research)</note>
<note type="funding">U. S. Army Research Office</note>
<note type="funding">Montana Board of Research and Commercialization Technology</note>
<note type="funding">Royal Swedish Academy of Science</note>
<note type="funding">Swedish Research Council</note>
<note type="funding">Russian Foundation for Basic Research - No. 06021682; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>Quantum memory</topic>
<topic>quantum repeater</topic>
<topic>quantum communication</topic>
<topic>photon‐echo</topic>
<topic>rare‐earth‐ions.</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Laser & Photonics Reviews</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Laser & Photon. Rev.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Editor's Choice</topic>
</subject>
<identifier type="ISSN">1863-8880</identifier>
<identifier type="eISSN">1863-8899</identifier>
<identifier type="DOI">10.1002/(ISSN)1863-8899</identifier>
<identifier type="PublisherID">LPOR</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>244</start>
<end>267</end>
<total>24</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39</identifier>
<identifier type="ark">ark:/67375/WNG-F54L6WM6-N</identifier>
<identifier type="DOI">10.1002/lpor.200810056</identifier>
<identifier type="ArticleID">LPOR200810056</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002963 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002963 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:BBBAD35DDB2D39DA5DBC4B940A15C0949E1F0F39
   |texte=   Photon‐echo quantum memory in solid state systems
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024