Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A review of progress in thermophotovoltaic generation of electricity

Identifieur interne : 002884 ( Istex/Corpus ); précédent : 002883; suivant : 002885

A review of progress in thermophotovoltaic generation of electricity

Auteurs : T. J. Coutts

Source :

RBID : ISTEX:B8813EEB1533AF94D61E97ED505557B259334D0A

English descriptors


Url:
DOI: 10.1016/S1364-0321(98)00021-5

Links to Exploration step

ISTEX:B8813EEB1533AF94D61E97ED505557B259334D0A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A review of progress in thermophotovoltaic generation of electricity</title>
<author>
<name sortKey="Coutts, T J" sort="Coutts, T J" uniqKey="Coutts T" first="T. J." last="Coutts">T. J. Coutts</name>
<affiliation>
<mods:affiliation>National Renewable Energy Laboratory, Golden, Colorado 80401, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B8813EEB1533AF94D61E97ED505557B259334D0A</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S1364-0321(98)00021-5</idno>
<idno type="url">https://api.istex.fr/document/B8813EEB1533AF94D61E97ED505557B259334D0A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002884</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002884</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A review of progress in thermophotovoltaic generation of electricity</title>
<author>
<name sortKey="Coutts, T J" sort="Coutts, T J" uniqKey="Coutts T" first="T. J." last="Coutts">T. J. Coutts</name>
<affiliation>
<mods:affiliation>National Renewable Energy Laboratory, Golden, Colorado 80401, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Renewable and Sustainable Energy Reviews</title>
<title level="j" type="abbrev">RSER</title>
<idno type="ISSN">1364-0321</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">3</biblScope>
<biblScope unit="issue">2–3</biblScope>
<biblScope unit="page" from="77">77</biblScope>
<biblScope unit="page" to="184">184</biblScope>
</imprint>
<idno type="ISSN">1364-0321</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1364-0321</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layers</term>
<term>Allman</term>
<term>Alloy</term>
<term>American institute</term>
<term>Array</term>
<term>Bandgap</term>
<term>Bandgaps</term>
<term>Bene_t</term>
<term>Benner</term>
<term>Bers</term>
<term>Blackbody</term>
<term>Blackbody radiation</term>
<term>Blackbody radiator</term>
<term>Blackbody radiators</term>
<term>Blackbody spectrum</term>
<term>Cadmium stannate</term>
<term>Carrier concentration</term>
<term>Chubb</term>
<term>Combustion chamber</term>
<term>Conf</term>
<term>Converter</term>
<term>Converter bandgap</term>
<term>Coutts</term>
<term>Current density</term>
<term>De_ned</term>
<term>Device fabrication</term>
<term>Dielectric</term>
<term>Dielectric stacks</term>
<term>Diode</term>
<term>Doped</term>
<term>Doping</term>
<term>Electrical power output</term>
<term>Emission band</term>
<term>Emissivity</term>
<term>Emitter</term>
<term>Empirical approach</term>
<term>Epitaxial</term>
<term>Erbia</term>
<term>Etching</term>
<term>External circuit</term>
<term>External quantum</term>
<term>Fatemi</term>
<term>First nrel conference</term>
<term>Fraas</term>
<term>Gaas</term>
<term>Gainassb</term>
<term>Gainsb</term>
<term>Gasb</term>
<term>Gasb cells</term>
<term>Gasb substrate</term>
<term>Gasb substrates</term>
<term>Ginley</term>
<term>Grid</term>
<term>Grid lines</term>
<term>Growth temperature</term>
<term>Ideal bandgap</term>
<term>Ieee</term>
<term>Ieee photovoltaic specialists conference</term>
<term>Incident radiation</term>
<term>Individual cells</term>
<term>Individual components</term>
<term>Ingaas</term>
<term>Input fuel power</term>
<term>Inst</term>
<term>Inst phys conf series</term>
<term>Interconnect</term>
<term>Joule</term>
<term>Joule losses</term>
<term>Lanthanide</term>
<term>Layer</term>
<term>Leakage path</term>
<term>Longwave</term>
<term>Lter</term>
<term>Lters</term>
<term>Military applications</term>
<term>Mims</term>
<term>Modeling</term>
<term>Module</term>
<term>Monolithic</term>
<term>Mophotovoltaic generation</term>
<term>Ngers</term>
<term>Nrel</term>
<term>Ohmic contacts</term>
<term>Optical properties</term>
<term>Optimum bandgap</term>
<term>Other hand</term>
<term>Output power</term>
<term>Oxide</term>
<term>Parametrically</term>
<term>Periodic table</term>
<term>Photon</term>
<term>Photon energy</term>
<term>Photon recirculation</term>
<term>Photovoltaic</term>
<term>Phys</term>
<term>Power densities</term>
<term>Power density</term>
<term>Power output</term>
<term>Pro_le</term>
<term>Prototype system</term>
<term>Quartz</term>
<term>Quartz tubes</term>
<term>Quaternary</term>
<term>Quaternary alloy</term>
<term>Quaternary devices</term>
<term>Radiant energy</term>
<term>Radiant surface</term>
<term>Radiative</term>
<term>Radiative recombination</term>
<term>Radiator</term>
<term>Radiator temperature</term>
<term>Radiator temperatures</term>
<term>Raman spectroscopy</term>
<term>Recirculation</term>
<term>Recombination</term>
<term>Recuperation</term>
<term>Refractive index</term>
<term>Resonant array</term>
<term>Second nrel conference</term>
<term>Selective radiator</term>
<term>Selective radiators</term>
<term>Semiconductor</term>
<term>Semiconductor converter</term>
<term>Semiconductor converters</term>
<term>Series resistance</term>
<term>Signi_cant</term>
<term>Signi_cantly</term>
<term>Silicon</term>
<term>Silicon cells</term>
<term>Solar cell</term>
<term>Solar cells</term>
<term>Speci_c</term>
<term>Speci_c contact resistance</term>
<term>Subcell</term>
<term>Subcells</term>
<term>Surface concentration</term>
<term>Sustainable</term>
<term>Sustainable reviews</term>
<term>System design</term>
<term>Tandem</term>
<term>Tcos</term>
<term>Temperature gradient</term>
<term>Ternary</term>
<term>Thermophotovoltaic</term>
<term>Thermophotovoltaic generation</term>
<term>Thermophotovoltaics</term>
<term>Third nrel</term>
<term>Third nrel conference</term>
<term>Total energy</term>
<term>Transmittance</term>
<term>Upper limit</term>
<term>Uxes</term>
<term>Valence</term>
<term>View factor</term>
<term>Wafer</term>
<term>Wanlass</term>
<term>Waste heat</term>
<term>Wavelength</term>
<term>Wavelength range</term>
<term>Wide range</term>
<term>Window layer</term>
<term>Wojtczuk</term>
<term>Ytterbia</term>
<term>Ytterbia radiator</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active layers</term>
<term>Allman</term>
<term>Alloy</term>
<term>American institute</term>
<term>Array</term>
<term>Bandgap</term>
<term>Bandgaps</term>
<term>Bene_t</term>
<term>Benner</term>
<term>Bers</term>
<term>Blackbody</term>
<term>Blackbody radiation</term>
<term>Blackbody radiator</term>
<term>Blackbody radiators</term>
<term>Blackbody spectrum</term>
<term>Cadmium stannate</term>
<term>Carrier concentration</term>
<term>Chubb</term>
<term>Combustion chamber</term>
<term>Conf</term>
<term>Converter</term>
<term>Converter bandgap</term>
<term>Coutts</term>
<term>Current density</term>
<term>De_ned</term>
<term>Device fabrication</term>
<term>Dielectric</term>
<term>Dielectric stacks</term>
<term>Diode</term>
<term>Doped</term>
<term>Doping</term>
<term>Electrical power output</term>
<term>Emission band</term>
<term>Emissivity</term>
<term>Emitter</term>
<term>Empirical approach</term>
<term>Epitaxial</term>
<term>Erbia</term>
<term>Etching</term>
<term>External circuit</term>
<term>External quantum</term>
<term>Fatemi</term>
<term>First nrel conference</term>
<term>Fraas</term>
<term>Gaas</term>
<term>Gainassb</term>
<term>Gainsb</term>
<term>Gasb</term>
<term>Gasb cells</term>
<term>Gasb substrate</term>
<term>Gasb substrates</term>
<term>Ginley</term>
<term>Grid</term>
<term>Grid lines</term>
<term>Growth temperature</term>
<term>Ideal bandgap</term>
<term>Ieee</term>
<term>Ieee photovoltaic specialists conference</term>
<term>Incident radiation</term>
<term>Individual cells</term>
<term>Individual components</term>
<term>Ingaas</term>
<term>Input fuel power</term>
<term>Inst</term>
<term>Inst phys conf series</term>
<term>Interconnect</term>
<term>Joule</term>
<term>Joule losses</term>
<term>Lanthanide</term>
<term>Layer</term>
<term>Leakage path</term>
<term>Longwave</term>
<term>Lter</term>
<term>Lters</term>
<term>Military applications</term>
<term>Mims</term>
<term>Modeling</term>
<term>Module</term>
<term>Monolithic</term>
<term>Mophotovoltaic generation</term>
<term>Ngers</term>
<term>Nrel</term>
<term>Ohmic contacts</term>
<term>Optical properties</term>
<term>Optimum bandgap</term>
<term>Other hand</term>
<term>Output power</term>
<term>Oxide</term>
<term>Parametrically</term>
<term>Periodic table</term>
<term>Photon</term>
<term>Photon energy</term>
<term>Photon recirculation</term>
<term>Photovoltaic</term>
<term>Phys</term>
<term>Power densities</term>
<term>Power density</term>
<term>Power output</term>
<term>Pro_le</term>
<term>Prototype system</term>
<term>Quartz</term>
<term>Quartz tubes</term>
<term>Quaternary</term>
<term>Quaternary alloy</term>
<term>Quaternary devices</term>
<term>Radiant energy</term>
<term>Radiant surface</term>
<term>Radiative</term>
<term>Radiative recombination</term>
<term>Radiator</term>
<term>Radiator temperature</term>
<term>Radiator temperatures</term>
<term>Raman spectroscopy</term>
<term>Recirculation</term>
<term>Recombination</term>
<term>Recuperation</term>
<term>Refractive index</term>
<term>Resonant array</term>
<term>Second nrel conference</term>
<term>Selective radiator</term>
<term>Selective radiators</term>
<term>Semiconductor</term>
<term>Semiconductor converter</term>
<term>Semiconductor converters</term>
<term>Series resistance</term>
<term>Signi_cant</term>
<term>Signi_cantly</term>
<term>Silicon</term>
<term>Silicon cells</term>
<term>Solar cell</term>
<term>Solar cells</term>
<term>Speci_c</term>
<term>Speci_c contact resistance</term>
<term>Subcell</term>
<term>Subcells</term>
<term>Surface concentration</term>
<term>Sustainable</term>
<term>Sustainable reviews</term>
<term>System design</term>
<term>Tandem</term>
<term>Tcos</term>
<term>Temperature gradient</term>
<term>Ternary</term>
<term>Thermophotovoltaic</term>
<term>Thermophotovoltaic generation</term>
<term>Thermophotovoltaics</term>
<term>Third nrel</term>
<term>Third nrel conference</term>
<term>Total energy</term>
<term>Transmittance</term>
<term>Upper limit</term>
<term>Uxes</term>
<term>Valence</term>
<term>View factor</term>
<term>Wafer</term>
<term>Wanlass</term>
<term>Waste heat</term>
<term>Wavelength</term>
<term>Wavelength range</term>
<term>Wide range</term>
<term>Window layer</term>
<term>Wojtczuk</term>
<term>Ytterbia</term>
<term>Ytterbia radiator</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>coutts</json:string>
<json:string>photon</json:string>
<json:string>converter</json:string>
<json:string>sustainable</json:string>
<json:string>sustainable reviews</json:string>
<json:string>american institute</json:string>
<json:string>gasb</json:string>
<json:string>thermophotovoltaic</json:string>
<json:string>bandgap</json:string>
<json:string>semiconductor</json:string>
<json:string>nrel</json:string>
<json:string>lter</json:string>
<json:string>phys</json:string>
<json:string>inst</json:string>
<json:string>benner</json:string>
<json:string>inst phys conf series</json:string>
<json:string>conf</json:string>
<json:string>thermophotovoltaic generation</json:string>
<json:string>radiator temperature</json:string>
<json:string>blackbody</json:string>
<json:string>recirculation</json:string>
<json:string>third nrel conference</json:string>
<json:string>dielectric</json:string>
<json:string>allman</json:string>
<json:string>grid</json:string>
<json:string>radiator</json:string>
<json:string>lters</json:string>
<json:string>emitter</json:string>
<json:string>ingaas</json:string>
<json:string>photovoltaic</json:string>
<json:string>recombination</json:string>
<json:string>speci_c</json:string>
<json:string>quaternary</json:string>
<json:string>modeling</json:string>
<json:string>lanthanide</json:string>
<json:string>photon recirculation</json:string>
<json:string>parametrically</json:string>
<json:string>ieee</json:string>
<json:string>emissivity</json:string>
<json:string>signi_cant</json:string>
<json:string>selective radiator</json:string>
<json:string>selective radiators</json:string>
<json:string>power density</json:string>
<json:string>gainassb</json:string>
<json:string>de_ned</json:string>
<json:string>bandgaps</json:string>
<json:string>solar cells</json:string>
<json:string>radiative</json:string>
<json:string>first nrel conference</json:string>
<json:string>fraas</json:string>
<json:string>diode</json:string>
<json:string>other hand</json:string>
<json:string>current density</json:string>
<json:string>longwave</json:string>
<json:string>pro_le</json:string>
<json:string>ngers</json:string>
<json:string>gasb substrate</json:string>
<json:string>ternary</json:string>
<json:string>tcos</json:string>
<json:string>upper limit</json:string>
<json:string>gasb substrates</json:string>
<json:string>subcells</json:string>
<json:string>carrier concentration</json:string>
<json:string>ytterbia</json:string>
<json:string>valence</json:string>
<json:string>wanlass</json:string>
<json:string>recuperation</json:string>
<json:string>transmittance</json:string>
<json:string>silicon</json:string>
<json:string>doped</json:string>
<json:string>uxes</json:string>
<json:string>doping</json:string>
<json:string>gainsb</json:string>
<json:string>external quantum</json:string>
<json:string>subcell</json:string>
<json:string>bene_t</json:string>
<json:string>gasb cells</json:string>
<json:string>signi_cantly</json:string>
<json:string>wavelength</json:string>
<json:string>fatemi</json:string>
<json:string>epitaxial</json:string>
<json:string>wafer</json:string>
<json:string>second nrel conference</json:string>
<json:string>gaas</json:string>
<json:string>etching</json:string>
<json:string>bers</json:string>
<json:string>interconnect</json:string>
<json:string>thermophotovoltaics</json:string>
<json:string>ginley</json:string>
<json:string>radiative recombination</json:string>
<json:string>mims</json:string>
<json:string>silicon cells</json:string>
<json:string>erbia</json:string>
<json:string>quartz tubes</json:string>
<json:string>individual components</json:string>
<json:string>semiconductor converters</json:string>
<json:string>joule</json:string>
<json:string>wojtczuk</json:string>
<json:string>module</json:string>
<json:string>series resistance</json:string>
<json:string>chubb</json:string>
<json:string>speci_c contact resistance</json:string>
<json:string>radiant surface</json:string>
<json:string>converter bandgap</json:string>
<json:string>quaternary alloy</json:string>
<json:string>ieee photovoltaic specialists conference</json:string>
<json:string>semiconductor converter</json:string>
<json:string>output power</json:string>
<json:string>wavelength range</json:string>
<json:string>blackbody spectrum</json:string>
<json:string>optical properties</json:string>
<json:string>waste heat</json:string>
<json:string>alloy</json:string>
<json:string>growth temperature</json:string>
<json:string>radiator temperatures</json:string>
<json:string>grid lines</json:string>
<json:string>active layers</json:string>
<json:string>ohmic contacts</json:string>
<json:string>resonant array</json:string>
<json:string>periodic table</json:string>
<json:string>photon energy</json:string>
<json:string>electrical power output</json:string>
<json:string>window layer</json:string>
<json:string>wide range</json:string>
<json:string>joule losses</json:string>
<json:string>empirical approach</json:string>
<json:string>optimum bandgap</json:string>
<json:string>power densities</json:string>
<json:string>system design</json:string>
<json:string>quartz</json:string>
<json:string>oxide</json:string>
<json:string>ytterbia radiator</json:string>
<json:string>raman spectroscopy</json:string>
<json:string>total energy</json:string>
<json:string>radiant energy</json:string>
<json:string>solar cell</json:string>
<json:string>quaternary devices</json:string>
<json:string>mophotovoltaic generation</json:string>
<json:string>external circuit</json:string>
<json:string>power output</json:string>
<json:string>ideal bandgap</json:string>
<json:string>blackbody radiators</json:string>
<json:string>third nrel</json:string>
<json:string>military applications</json:string>
<json:string>device fabrication</json:string>
<json:string>blackbody radiator</json:string>
<json:string>refractive index</json:string>
<json:string>individual cells</json:string>
<json:string>emission band</json:string>
<json:string>blackbody radiation</json:string>
<json:string>dielectric stacks</json:string>
<json:string>view factor</json:string>
<json:string>cadmium stannate</json:string>
<json:string>temperature gradient</json:string>
<json:string>leakage path</json:string>
<json:string>incident radiation</json:string>
<json:string>combustion chamber</json:string>
<json:string>surface concentration</json:string>
<json:string>prototype system</json:string>
<json:string>input fuel power</json:string>
<json:string>array</json:string>
<json:string>tandem</json:string>
<json:string>monolithic</json:string>
<json:string>layer</json:string>
<json:string>quantum</json:string>
<json:string>cody</json:string>
<json:string>electronic structure</json:string>
<json:string>algaassb window layer</json:string>
<json:string>optical cavity</json:string>
<json:string>recent years</json:string>
<json:string>front surface</json:string>
<json:string>cell temperature</json:string>
<json:string>same amount</json:string>
<json:string>former case</json:string>
<json:string>valence electrons</json:string>
<json:string>websites change</json:string>
<json:string>radiator materials</json:string>
<json:string>temperature pro_le</json:string>
<json:string>metal interconnect</json:string>
<json:string>next section</json:string>
<json:string>optical constants</json:string>
<json:string>practical systems</json:string>
<json:string>ingasb crystals</json:string>
<json:string>interconnection scheme</json:string>
<json:string>last section</json:string>
<json:string>support structure</json:string>
<json:string>high temperature</json:string>
<json:string>longwave photons</json:string>
<json:string>other components</json:string>
<json:string>relaxation time</json:string>
<json:string>resonant antenna arrays</json:string>
<json:string>quantum numbers</json:string>
<json:string>converter temperature</json:string>
<json:string>minimal absorption</json:string>
<json:string>conceptual designs</json:string>
<json:string>system performance</json:string>
<json:string>physical properties</json:string>
<json:string>speci_c components</json:string>
<json:string>surface area</json:string>
<json:string>overall system</json:string>
<json:string>conceptual design</json:string>
<json:string>temperature distribution</json:string>
<json:string>entire spectrum</json:string>
<json:string>various radiator temperatures</json:string>
<json:string>internal quantum</json:string>
<json:string>preheat temperature</json:string>
<json:string>resonant antenna array</json:string>
<json:string>lanthanide oxides</json:string>
<json:string>fermi level</json:string>
<json:string>quaternary alloys</json:string>
<json:string>incident energy</json:string>
<json:string>other semiconductors</json:string>
<json:string>greater detail</json:string>
<json:string>power density output</json:string>
<json:string>renewable energy laboratory</json:string>
<json:string>gainassb device</json:string>
<json:string>intersociety energy conversion engineering conference</json:string>
<json:string>prototype</json:string>
<json:string>trench</json:string>
<json:string>schematic</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>T.J. Coutts</name>
<affiliations>
<json:string>National Renewable Energy Laboratory, Golden, Colorado 80401, USA</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<qualityIndicators>
<score>5.012</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>0</abstractCharCount>
<pdfWordCount>37855</pdfWordCount>
<pdfCharCount>220433</pdfCharCount>
<pdfPageCount>108</pdfPageCount>
<abstractWordCount>1</abstractWordCount>
</qualityIndicators>
<title>A review of progress in thermophotovoltaic generation of electricity</title>
<pii>
<json:string>S1364-0321(98)00021-5</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Renewable and Sustainable Energy Reviews</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1999</publicationDate>
<issn>
<json:string>1364-0321</json:string>
</issn>
<pii>
<json:string>S1364-0321(00)X0005-6</json:string>
</pii>
<volume>3</volume>
<issue>2–3</issue>
<pages>
<first>77</first>
<last>184</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>energy & fuels</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>energy</json:string>
</scienceMetrix>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S1364-0321(98)00021-5</json:string>
</doi>
<id>B8813EEB1533AF94D61E97ED505557B259334D0A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/B8813EEB1533AF94D61E97ED505557B259334D0A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/B8813EEB1533AF94D61E97ED505557B259334D0A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/B8813EEB1533AF94D61E97ED505557B259334D0A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">A review of progress in thermophotovoltaic generation of electricity</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1998 Elsevier Science Ltd</p>
</availability>
<date>1998</date>
</publicationStmt>
<notesStmt>
<note>I began writing this paper immediately after the Third nrel Conference on Thermophotovoltaic Genertion of materials, devices, and systems; substantial gains in fundamental understanding and performance of the quaternary alloy GaInAsSb; the introduction of new radiator concepts; and more attention being paid to modeling of both real and conceptual systems. There was also further evidence of interest in non-military applications, particularly from the European and Japanese attendees.</note>
<note type="content">Fig. 1: Percentage of convertible flux from blackbody radiators at the temperatures shown, with the bandgap of the converter.</note>
<note type="content">Fig. 2: a. Spectral flux and power density as a function of wavelength for a blackbody temperature radiator of 1500 K.</note>
<note type="content">Fig. 3: Selective radiator based on fiber bundles of ytterbia. Reproduced by permission of the American Institute of Physics, and the author(s) [34].</note>
<note type="content">Fig. 4: Variation of the quantity of radiation convertible by silicon cells with the fuel loading. The numbers in the diagram indicate the richness of the fuel⧸air mixture. Reproduced by permission of the American Institute of Physics, and the author(s) [34].</note>
<note type="content">Fig. 5: a. Variation of the emissivity of a thin-film of erbium⧸YAG with the film thickness, with the radiator temperature being treated parametrically. Reproduced by permission of the American Institute of Physics, and the author(s) [36].</note>
<note type="content">Fig. 6: Modeled variation of the efficiency of a p⧸n junction converter. Reproduced by permission of the American Institute of Physics, and the author(s).</note>
<note type="content">Fig. 7: Modeled variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. No sub-bandgap photons are returned to the radiator. Reproduced by permission of the American Institute of Physics.</note>
<note type="content">Fig. 8: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. Twenty-five percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 9: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. Fifty percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 10: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. Seventy-five percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 11: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. One hundred percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 12: Power-density output as a function of converter bandgap, with the radiator temperature being treated parametrically. The power output is unaffected by the recirculation efficiency.</note>
<note type="content">Fig. 13: Variation of efficiency with the bandgap of the converter for a band-pass filter. The incident radiation is limited to the range Eg < E < Eg+0.1 eV. The device temperature was 300 K, the view factor was unity, and the spurious reflectance was zero.</note>
<note type="content">Fig. 14: Variation of power-density output with the bandgap of the converter, for a band-pass filter. The incident radiation is limited to the range Eg < E < Eg+0.1 eV. The device temperature was 300 K, the view factor was unity, and the spurious reflectance was zero. The power density is unaffected by the efficiency of the photon recirculation process.</note>
<note type="content">Fig. 15: Variation of the logarithm of the reverse saturation current density and the short-circuit current density as functions of converter bandgap. The converter temperature is treated parametrically in the former case, and the radiator temperature is treated parametrically in the latter.</note>
<note type="content">Fig. 16: Variation of fill factor and open-circuit voltage with converter bandgap. The radiator temperature is treated parametrically.</note>
<note type="content">Fig. 17: Variation of the converter efficiency and the power-density output as a function of the converter bandgap. The radiator temperature is treated parametrically, and 100%-efficient recirculation of sub-bandgap photons is assumed.</note>
<note type="content">Fig. 18: Diagram of the bandgap of various compound and alloy semiconductors from the III–V family.</note>
<note type="content">Fig. 19: Diagram of the bandgap of various compound and alloy semiconductors from the II–VI family.</note>
<note type="content">Fig. 20: Profile of the concentration profile of Zn as a function of the depth, for three different diffusion temperatures, after one hour. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 21: Dependence of the surface concentration of Zn and the thickness of the p-type layer as functions of the square root of the diffusion time. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 22: Concentration of free holes and electrons (measured by Raman spectroscopy) and of Zn atoms, measured by SIMS. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 23: Measured external quantum efficiency of a GaSb with a single-layer Si3N4 anti-reflection coating. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 24: Variation of efficiency with the blackbody temperature. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 25: Variation of FWHM of XRD peak of GaInSb with the thickness of the grading layer. Reproduced by permission of the American Institute of Physics, and the author(s) [61].</note>
<note type="content">Fig. 26: Current density vs voltage characteristics for binary, ternary, and quaternary devices from the GaInAsSb family of alloys. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 27: Internal quantum efficiency of the three devices shown in Fig. 26. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 28: Transmittance of a modeled resonant antenna array. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 29: Variation of the efficiency and the power-density output of a TPV device illuminated with an irradiance filtered by a resonant antenna array. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 30: Cross-section of a GaInAsSb device. Reproduced by permission of the American Institute of Physics, and the author(s) [56].</note>
<note type="content">Fig. 31: External and internal quantum efficiency data of a GaInAsSb device. Reproduced by permission of the American Institute of Physics, and the author(s) [56].</note>
<note type="content">Fig. 32: Quantum efficiency of a GaInAsSb device with AlGaAsSb window layer [57].</note>
<note type="content">Fig. 33: Room-temperature photoluminescence spectra of GaInAsSb devices with and without a window layer. Reproduced by permission of the American Institute of Physics, and the author(s) [57].</note>
<note type="content">Fig. 34: Plan and cross-sectional views of an MIM device. Reproduced by permission of the American Institute of Physics, and the author(s) [67].</note>
<note type="content">Fig. 35: Cross-sectional view of a complete MIM structure. Reproduced by permission of the American Institute of Physics, and the author(s) [67].</note>
<note type="content">Fig. 36: Reflectance from an MIM with Au-only and Ag-only back-surface reflector. Reproduced by permission of the American Institute of Physics, and the author(s) [67].</note>
<note type="content">Fig. 37: Current⧸voltage characteristic from an MIM tested under a flash lamp. Reproduced by permission of the American Institute of Physics, and the author(s) [37].</note>
<note type="content">Fig. 38: External quantum efficiency of the device shown in Fig. 37. Reproduced by permission of the American Institute of Physics, and the author(s) [37].</note>
<note type="content">Fig. 39: Schematic of the MIM interconnection scheme used by Ward et al. Reproduced by permission of the American Institute of Physics, and the author(s) [70].</note>
<note type="content">Fig. 40: Resistive losses introduced by the spreading resistance of the lateral back-contact layer and by the grid fingers. Reproduced by permission of the American Institute of Physics, and the author(s) [70].</note>
<note type="content">Fig. 41: SEM of an isolation trench and the grid fingers connecting the top of one subcell to the back of the next subcell. Reproduced by permission of the American Institute of Physics, and the author(s) [70].</note>
<note type="content">Fig. 42:</note>
<note type="content">Fig. 43: Modeled reflectance of a designed multi-layer filter. Achieving this performance required more than 70 individual layers of MgF2 and ZnS.</note>
<note type="content">Fig. 44: Modeled transmittance of a designed band-pass filter. As with Fig. 42, more than 70 dielectric layers were required. Superior performance can be achieved with even more layers.</note>
<note type="content">Fig. 45: Modeled performance of a band-pass filter with up to ±2% random uncertainty in the control of the thicknesses of the dielectric layers.</note>
<note type="content">Fig. 46: Modeled effect of a variation in the angle of incidence on the performance of the filter shown in Fig. 44. Such variations would be expected across a large area.</note>
<note type="content">Fig. 47: Modeled performance of an extended-wavelength band-pass filter. A broad-band radiator still has 12% of its flux at 10 μm, and excellent reflectance to this wavelength would be required of a real filter.</note>
<note type="content">Fig. 48: Modeled variation of the reflectance of a plasma filter as a function of wavelength, with the carrier concentration being treated parametrically. The mobility was taken as 50 cm2 V−1 s−1.</note>
<note type="content">Fig. 49: Modeled variation of the absorbance of plasma filters as a function of wavelength, with the mobility being treated parametrically. The carrier concentration was 1020 cm−3.</note>
<note type="content">Fig. 50: Modeled performance of a resonant array filter. The characteristic dimension of the array metallization is on the order of 1 μm. The equivalent inductance and capacitance are given in the text.</note>
<note type="content">Fig. 51: Reflectance from an MIM structure. The reflectance in the sub-bandgap region of the infrared spectrum is greater than 98%.</note>
<note type="content">Fig. 52: Schematic of the solar-powered TPV system visualized by Stone et al. Reproduced by permission of the American Institute of Physics, and the author(s) [101].</note>
<note type="content">Fig. 53: Exploded view of the components of the radioisotope-fueled TPV generator proposed by Shock et al. Reproduced by permission of the American Institute of Physics, and the author(s) [102].</note>
<note type="content">Fig. 54: Exploded view of the radioisotope-fueled TPV generator and of one of the cooling fins. Reproduced by permission of the American Institute of Physics, and the author(s) [111].</note>
<note type="content">Fig. 55: Schematic of the diesel-fueled TPV generator proposed by Guazzoni et al. Reproduced by permission of the American Institute of Physics, and the author(s) [103].</note>
<note type="content">Fig. 56: Reflectance of a coated silicon-carbide surface. The latter was coated to ensure that only above-bandgap radiation reaches the TPV cells. Reproduced by permission of the American Institute of Physics, and the author(s) [103].</note>
<note type="content">Fig. 57: Performance of the existing and advanced-prototype TPV generators developed by Becker et al. Reproduced by permission of the American Institute of Physics, and the author(s) [104].</note>
<note type="content">Fig. 58: Schematic of the TPV generator developed by Fraas et al. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 59: Photograph of the JX Crystals TPV generator developed by Fraas et al. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 60: Typical current⧸voltage characteristic of the GaSb-based TPV generator developed by Fraas et al. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 61: Electrical power output and the current⧸voltage characteristic of an array of 48 GaSb cells connected in series. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 62: The prototype TPV system developed by Adair et al. Reproduced by permission of the American Institute of Physics, and the author(s) [38].</note>
<note type="content">Fig. 63: Variation of the spectral exitance with wavelength for an erbia radiator. Reproduced by permission of the American Institute of Physics, and the author(s) [38].</note>
<note type="content">Fig. 64: Schematic of the hydronic⧸electric generator developed by Kushch et al. [108].</note>
<note type="content">Fig. 65: Photograph of the Quantum Group, Inc., TPV hydronic⧸electronic TPV generator developed by Kushch et al. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 66: Illustration of the PV cell array and the ytterbia radiator. The arrays are connected in circuits of 12 cells. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 67: Variation of the electric output power with the excess air in the fuel⧸air mixture, from the TPV generator developed by Kushch et al. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 68: Variation of carbon monoxide concentration with the concentration of excess air in the fuel⧸air mixture. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 69: Flue loss as a function of excess air in the air⧸fuel mixture. Three different fuel input rates are shown. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Table 1: The Lanthanide Series</note>
<note type="content">Table 2: Variation of the power density output and efficiency of diffused-junction GaSb TPV converters for various radiator temperatures [2]</note>
<note type="content">Table 3: Parameters of an eight-subcell MIM, measured at various operating temperatures [70]</note>
<note type="content">Table 4: Measured and modeled heat fluxes on a 4 × 4 array of cells. The first line shows the result for the single surface filter; the second shows the result for the tandem filter [98]</note>
<note type="content">Table 5: Design specifications for the existing and advanced prototype TPV generators [104]</note>
<note type="content">Table 6: Thermal efficiency of erbia radiators. These data show that the efficiency of conversion of fuel to photons is approximately 16–17% [38]</note>
<note type="content">Table 7: Variation of the incident optical power on the PV array as a function of the input fuel power [38]</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">A review of progress in thermophotovoltaic generation of electricity</title>
<author xml:id="author-0000">
<persName>
<forename type="first">T.J.</forename>
<surname>Coutts</surname>
</persName>
<note type="correspondence">
<p>Corresponding author. Tel.: 001 303 384 6561; fax: 001 303 384 6430; e-mail: tim coutts@nrel.gov</p>
</note>
<affiliation>National Renewable Energy Laboratory, Golden, Colorado 80401, USA</affiliation>
</author>
<idno type="istex">B8813EEB1533AF94D61E97ED505557B259334D0A</idno>
<idno type="DOI">10.1016/S1364-0321(98)00021-5</idno>
<idno type="PII">S1364-0321(98)00021-5</idno>
</analytic>
<monogr>
<title level="j">Renewable and Sustainable Energy Reviews</title>
<title level="j" type="abbrev">RSER</title>
<idno type="pISSN">1364-0321</idno>
<idno type="PII">S1364-0321(00)X0005-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">3</biblScope>
<biblScope unit="issue">2–3</biblScope>
<biblScope unit="page" from="77">77</biblScope>
<biblScope unit="page" to="184">184</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="1998">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/B8813EEB1533AF94D61E97ED505557B259334D0A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2a" NDATA="IMAGE" name="gr2a"></istex:entity>
<istex:entity SYSTEM="gr2b" NDATA="IMAGE" name="gr2b"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5a" NDATA="IMAGE" name="gr5a"></istex:entity>
<istex:entity SYSTEM="gr5b" NDATA="IMAGE" name="gr5b"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
<istex:entity SYSTEM="gr16" NDATA="IMAGE" name="gr16"></istex:entity>
<istex:entity SYSTEM="gr17" NDATA="IMAGE" name="gr17"></istex:entity>
<istex:entity SYSTEM="gr18" NDATA="IMAGE" name="gr18"></istex:entity>
<istex:entity SYSTEM="gr19" NDATA="IMAGE" name="gr19"></istex:entity>
<istex:entity SYSTEM="gr20" NDATA="IMAGE" name="gr20"></istex:entity>
<istex:entity SYSTEM="gr21" NDATA="IMAGE" name="gr21"></istex:entity>
<istex:entity SYSTEM="gr22" NDATA="IMAGE" name="gr22"></istex:entity>
<istex:entity SYSTEM="gr23" NDATA="IMAGE" name="gr23"></istex:entity>
<istex:entity SYSTEM="gr24" NDATA="IMAGE" name="gr24"></istex:entity>
<istex:entity SYSTEM="gr25" NDATA="IMAGE" name="gr25"></istex:entity>
<istex:entity SYSTEM="gr26" NDATA="IMAGE" name="gr26"></istex:entity>
<istex:entity SYSTEM="gr27" NDATA="IMAGE" name="gr27"></istex:entity>
<istex:entity SYSTEM="gr28" NDATA="IMAGE" name="gr28"></istex:entity>
<istex:entity SYSTEM="gr29" NDATA="IMAGE" name="gr29"></istex:entity>
<istex:entity SYSTEM="gr30" NDATA="IMAGE" name="gr30"></istex:entity>
<istex:entity SYSTEM="gr31" NDATA="IMAGE" name="gr31"></istex:entity>
<istex:entity SYSTEM="gr32" NDATA="IMAGE" name="gr32"></istex:entity>
<istex:entity SYSTEM="gr33" NDATA="IMAGE" name="gr33"></istex:entity>
<istex:entity SYSTEM="gr34" NDATA="IMAGE" name="gr34"></istex:entity>
<istex:entity SYSTEM="gr35a" NDATA="IMAGE" name="gr35a"></istex:entity>
<istex:entity SYSTEM="gr35b" NDATA="IMAGE" name="gr35b"></istex:entity>
<istex:entity SYSTEM="gr36" NDATA="IMAGE" name="gr36"></istex:entity>
<istex:entity SYSTEM="gr37" NDATA="IMAGE" name="gr37"></istex:entity>
<istex:entity SYSTEM="gr38" NDATA="IMAGE" name="gr38"></istex:entity>
<istex:entity SYSTEM="gr39" NDATA="IMAGE" name="gr39"></istex:entity>
<istex:entity SYSTEM="gr40" NDATA="IMAGE" name="gr40"></istex:entity>
<istex:entity SYSTEM="gr41" NDATA="IMAGE" name="gr41"></istex:entity>
<istex:entity SYSTEM="gr42" NDATA="IMAGE" name="gr42"></istex:entity>
<istex:entity SYSTEM="gr43" NDATA="IMAGE" name="gr43"></istex:entity>
<istex:entity SYSTEM="gr44" NDATA="IMAGE" name="gr44"></istex:entity>
<istex:entity SYSTEM="gr45" NDATA="IMAGE" name="gr45"></istex:entity>
<istex:entity SYSTEM="gr46" NDATA="IMAGE" name="gr46"></istex:entity>
<istex:entity SYSTEM="gr47" NDATA="IMAGE" name="gr47"></istex:entity>
<istex:entity SYSTEM="gr48" NDATA="IMAGE" name="gr48"></istex:entity>
<istex:entity SYSTEM="gr49" NDATA="IMAGE" name="gr49"></istex:entity>
<istex:entity SYSTEM="gr50" NDATA="IMAGE" name="gr50"></istex:entity>
<istex:entity SYSTEM="gr51" NDATA="IMAGE" name="gr51"></istex:entity>
<istex:entity SYSTEM="gr52" NDATA="IMAGE" name="gr52"></istex:entity>
<istex:entity SYSTEM="gr53" NDATA="IMAGE" name="gr53"></istex:entity>
<istex:entity SYSTEM="gr54" NDATA="IMAGE" name="gr54"></istex:entity>
<istex:entity SYSTEM="gr55" NDATA="IMAGE" name="gr55"></istex:entity>
<istex:entity SYSTEM="gr56" NDATA="IMAGE" name="gr56"></istex:entity>
<istex:entity SYSTEM="gr57" NDATA="IMAGE" name="gr57"></istex:entity>
<istex:entity SYSTEM="gr58" NDATA="IMAGE" name="gr58"></istex:entity>
<istex:entity SYSTEM="gr59" NDATA="IMAGE" name="gr59"></istex:entity>
<istex:entity SYSTEM="gr60" NDATA="IMAGE" name="gr60"></istex:entity>
<istex:entity SYSTEM="gr61" NDATA="IMAGE" name="gr61"></istex:entity>
<istex:entity SYSTEM="gr62" NDATA="IMAGE" name="gr62"></istex:entity>
<istex:entity SYSTEM="gr63" NDATA="IMAGE" name="gr63"></istex:entity>
<istex:entity SYSTEM="gr64" NDATA="IMAGE" name="gr64"></istex:entity>
<istex:entity SYSTEM="gr65" NDATA="IMAGE" name="gr65"></istex:entity>
<istex:entity SYSTEM="gr66" NDATA="IMAGE" name="gr66"></istex:entity>
<istex:entity SYSTEM="gr67" NDATA="IMAGE" name="gr67"></istex:entity>
<istex:entity SYSTEM="gr68" NDATA="IMAGE" name="gr68"></istex:entity>
<istex:entity SYSTEM="gr69" NDATA="IMAGE" name="gr69"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>RSER</jid>
<aid>29</aid>
<ce:pii>S1364-0321(98)00021-5</ce:pii>
<ce:doi>10.1016/S1364-0321(98)00021-5</ce:doi>
<ce:copyright year="1998" type="full-transfer">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>A review of progress in thermophotovoltaic generation of electricity
<ce:cross-ref refid="FN1">fna</ce:cross-ref>
<ce:footnote id="FN1">
<ce:label>fna</ce:label>
<ce:note-para>I began writing this paper immediately after the Third nrel Conference on Thermophotovoltaic Genertion of materials, devices, and systems; substantial gains in fundamental understanding and performance of the quaternary alloy GaInAsSb; the introduction of new radiator concepts; and more attention being paid to modeling of both real and conceptual systems. There was also further evidence of interest in non-military applications, particularly from the European and Japanese attendees.</ce:note-para>
</ce:footnote>
</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>T.J.</ce:given-name>
<ce:surname>Coutts</ce:surname>
<ce:cross-ref refid="AFF1">1</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>1</ce:label>
<ce:textfn>National Renewable Energy Laboratory, Golden, Colorado 80401, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: 001 303 384 6561; fax: 001 303 384 6430; e-mail: tim
<math altimg="si1.gif">
<rm>
<unl type="bar"> </unl>
</rm>
</math>
coutts@nrel.gov</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="15" month="9" year="1998"></ce:date-received>
<ce:date-accepted day="18" month="9" year="1998"></ce:date-accepted>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>A review of progress in thermophotovoltaic generation of electricity</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>A review of progress in thermophotovoltaic generation of electricity</title>
</titleInfo>
<name type="personal">
<namePart type="given">T.J.</namePart>
<namePart type="family">Coutts</namePart>
<affiliation>National Renewable Energy Laboratory, Golden, Colorado 80401, USA</affiliation>
<description>Corresponding author. Tel.: 001 303 384 6561; fax: 001 303 384 6430; e-mail: tim coutts@nrel.gov</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<note type="footnote">I began writing this paper immediately after the Third nrel Conference on Thermophotovoltaic Genertion of materials, devices, and systems; substantial gains in fundamental understanding and performance of the quaternary alloy GaInAsSb; the introduction of new radiator concepts; and more attention being paid to modeling of both real and conceptual systems. There was also further evidence of interest in non-military applications, particularly from the European and Japanese attendees.</note>
<note type="content">Fig. 1: Percentage of convertible flux from blackbody radiators at the temperatures shown, with the bandgap of the converter.</note>
<note type="content">Fig. 2: a. Spectral flux and power density as a function of wavelength for a blackbody temperature radiator of 1500 K.</note>
<note type="content">Fig. 3: Selective radiator based on fiber bundles of ytterbia. Reproduced by permission of the American Institute of Physics, and the author(s) [34].</note>
<note type="content">Fig. 4: Variation of the quantity of radiation convertible by silicon cells with the fuel loading. The numbers in the diagram indicate the richness of the fuel⧸air mixture. Reproduced by permission of the American Institute of Physics, and the author(s) [34].</note>
<note type="content">Fig. 5: a. Variation of the emissivity of a thin-film of erbium⧸YAG with the film thickness, with the radiator temperature being treated parametrically. Reproduced by permission of the American Institute of Physics, and the author(s) [36].</note>
<note type="content">Fig. 6: Modeled variation of the efficiency of a p⧸n junction converter. Reproduced by permission of the American Institute of Physics, and the author(s).</note>
<note type="content">Fig. 7: Modeled variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. No sub-bandgap photons are returned to the radiator. Reproduced by permission of the American Institute of Physics.</note>
<note type="content">Fig. 8: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. Twenty-five percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 9: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. Fifty percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 10: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. Seventy-five percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 11: Variation of efficiency with bandgap of the converter. The radiator temperature is treated parametrically. One hundred percent of the sub-bandgap photons are returned to the radiator.</note>
<note type="content">Fig. 12: Power-density output as a function of converter bandgap, with the radiator temperature being treated parametrically. The power output is unaffected by the recirculation efficiency.</note>
<note type="content">Fig. 13: Variation of efficiency with the bandgap of the converter for a band-pass filter. The incident radiation is limited to the range Eg < E < Eg+0.1 eV. The device temperature was 300 K, the view factor was unity, and the spurious reflectance was zero.</note>
<note type="content">Fig. 14: Variation of power-density output with the bandgap of the converter, for a band-pass filter. The incident radiation is limited to the range Eg < E < Eg+0.1 eV. The device temperature was 300 K, the view factor was unity, and the spurious reflectance was zero. The power density is unaffected by the efficiency of the photon recirculation process.</note>
<note type="content">Fig. 15: Variation of the logarithm of the reverse saturation current density and the short-circuit current density as functions of converter bandgap. The converter temperature is treated parametrically in the former case, and the radiator temperature is treated parametrically in the latter.</note>
<note type="content">Fig. 16: Variation of fill factor and open-circuit voltage with converter bandgap. The radiator temperature is treated parametrically.</note>
<note type="content">Fig. 17: Variation of the converter efficiency and the power-density output as a function of the converter bandgap. The radiator temperature is treated parametrically, and 100%-efficient recirculation of sub-bandgap photons is assumed.</note>
<note type="content">Fig. 18: Diagram of the bandgap of various compound and alloy semiconductors from the III–V family.</note>
<note type="content">Fig. 19: Diagram of the bandgap of various compound and alloy semiconductors from the II–VI family.</note>
<note type="content">Fig. 20: Profile of the concentration profile of Zn as a function of the depth, for three different diffusion temperatures, after one hour. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 21: Dependence of the surface concentration of Zn and the thickness of the p-type layer as functions of the square root of the diffusion time. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 22: Concentration of free holes and electrons (measured by Raman spectroscopy) and of Zn atoms, measured by SIMS. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 23: Measured external quantum efficiency of a GaSb with a single-layer Si3N4 anti-reflection coating. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 24: Variation of efficiency with the blackbody temperature. Reproduced by permission of the American Institute of Physics, and the author(s) [2].</note>
<note type="content">Fig. 25: Variation of FWHM of XRD peak of GaInSb with the thickness of the grading layer. Reproduced by permission of the American Institute of Physics, and the author(s) [61].</note>
<note type="content">Fig. 26: Current density vs voltage characteristics for binary, ternary, and quaternary devices from the GaInAsSb family of alloys. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 27: Internal quantum efficiency of the three devices shown in Fig. 26. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 28: Transmittance of a modeled resonant antenna array. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 29: Variation of the efficiency and the power-density output of a TPV device illuminated with an irradiance filtered by a resonant antenna array. Reproduced by permission of the American Institute of Physics, and the author(s) [62].</note>
<note type="content">Fig. 30: Cross-section of a GaInAsSb device. Reproduced by permission of the American Institute of Physics, and the author(s) [56].</note>
<note type="content">Fig. 31: External and internal quantum efficiency data of a GaInAsSb device. Reproduced by permission of the American Institute of Physics, and the author(s) [56].</note>
<note type="content">Fig. 32: Quantum efficiency of a GaInAsSb device with AlGaAsSb window layer [57].</note>
<note type="content">Fig. 33: Room-temperature photoluminescence spectra of GaInAsSb devices with and without a window layer. Reproduced by permission of the American Institute of Physics, and the author(s) [57].</note>
<note type="content">Fig. 34: Plan and cross-sectional views of an MIM device. Reproduced by permission of the American Institute of Physics, and the author(s) [67].</note>
<note type="content">Fig. 35: Cross-sectional view of a complete MIM structure. Reproduced by permission of the American Institute of Physics, and the author(s) [67].</note>
<note type="content">Fig. 36: Reflectance from an MIM with Au-only and Ag-only back-surface reflector. Reproduced by permission of the American Institute of Physics, and the author(s) [67].</note>
<note type="content">Fig. 37: Current⧸voltage characteristic from an MIM tested under a flash lamp. Reproduced by permission of the American Institute of Physics, and the author(s) [37].</note>
<note type="content">Fig. 38: External quantum efficiency of the device shown in Fig. 37. Reproduced by permission of the American Institute of Physics, and the author(s) [37].</note>
<note type="content">Fig. 39: Schematic of the MIM interconnection scheme used by Ward et al. Reproduced by permission of the American Institute of Physics, and the author(s) [70].</note>
<note type="content">Fig. 40: Resistive losses introduced by the spreading resistance of the lateral back-contact layer and by the grid fingers. Reproduced by permission of the American Institute of Physics, and the author(s) [70].</note>
<note type="content">Fig. 41: SEM of an isolation trench and the grid fingers connecting the top of one subcell to the back of the next subcell. Reproduced by permission of the American Institute of Physics, and the author(s) [70].</note>
<note type="content">Fig. 42: </note>
<note type="content">Fig. 43: Modeled reflectance of a designed multi-layer filter. Achieving this performance required more than 70 individual layers of MgF2 and ZnS.</note>
<note type="content">Fig. 44: Modeled transmittance of a designed band-pass filter. As with Fig. 42, more than 70 dielectric layers were required. Superior performance can be achieved with even more layers.</note>
<note type="content">Fig. 45: Modeled performance of a band-pass filter with up to ±2% random uncertainty in the control of the thicknesses of the dielectric layers.</note>
<note type="content">Fig. 46: Modeled effect of a variation in the angle of incidence on the performance of the filter shown in Fig. 44. Such variations would be expected across a large area.</note>
<note type="content">Fig. 47: Modeled performance of an extended-wavelength band-pass filter. A broad-band radiator still has 12% of its flux at 10 μm, and excellent reflectance to this wavelength would be required of a real filter.</note>
<note type="content">Fig. 48: Modeled variation of the reflectance of a plasma filter as a function of wavelength, with the carrier concentration being treated parametrically. The mobility was taken as 50 cm2 V−1 s−1.</note>
<note type="content">Fig. 49: Modeled variation of the absorbance of plasma filters as a function of wavelength, with the mobility being treated parametrically. The carrier concentration was 1020 cm−3.</note>
<note type="content">Fig. 50: Modeled performance of a resonant array filter. The characteristic dimension of the array metallization is on the order of 1 μm. The equivalent inductance and capacitance are given in the text.</note>
<note type="content">Fig. 51: Reflectance from an MIM structure. The reflectance in the sub-bandgap region of the infrared spectrum is greater than 98%.</note>
<note type="content">Fig. 52: Schematic of the solar-powered TPV system visualized by Stone et al. Reproduced by permission of the American Institute of Physics, and the author(s) [101].</note>
<note type="content">Fig. 53: Exploded view of the components of the radioisotope-fueled TPV generator proposed by Shock et al. Reproduced by permission of the American Institute of Physics, and the author(s) [102].</note>
<note type="content">Fig. 54: Exploded view of the radioisotope-fueled TPV generator and of one of the cooling fins. Reproduced by permission of the American Institute of Physics, and the author(s) [111].</note>
<note type="content">Fig. 55: Schematic of the diesel-fueled TPV generator proposed by Guazzoni et al. Reproduced by permission of the American Institute of Physics, and the author(s) [103].</note>
<note type="content">Fig. 56: Reflectance of a coated silicon-carbide surface. The latter was coated to ensure that only above-bandgap radiation reaches the TPV cells. Reproduced by permission of the American Institute of Physics, and the author(s) [103].</note>
<note type="content">Fig. 57: Performance of the existing and advanced-prototype TPV generators developed by Becker et al. Reproduced by permission of the American Institute of Physics, and the author(s) [104].</note>
<note type="content">Fig. 58: Schematic of the TPV generator developed by Fraas et al. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 59: Photograph of the JX Crystals TPV generator developed by Fraas et al. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 60: Typical current⧸voltage characteristic of the GaSb-based TPV generator developed by Fraas et al. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 61: Electrical power output and the current⧸voltage characteristic of an array of 48 GaSb cells connected in series. Reproduced by permission of the American Institute of Physics, and the author(s) [105].</note>
<note type="content">Fig. 62: The prototype TPV system developed by Adair et al. Reproduced by permission of the American Institute of Physics, and the author(s) [38].</note>
<note type="content">Fig. 63: Variation of the spectral exitance with wavelength for an erbia radiator. Reproduced by permission of the American Institute of Physics, and the author(s) [38].</note>
<note type="content">Fig. 64: Schematic of the hydronic⧸electric generator developed by Kushch et al. [108].</note>
<note type="content">Fig. 65: Photograph of the Quantum Group, Inc., TPV hydronic⧸electronic TPV generator developed by Kushch et al. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 66: Illustration of the PV cell array and the ytterbia radiator. The arrays are connected in circuits of 12 cells. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 67: Variation of the electric output power with the excess air in the fuel⧸air mixture, from the TPV generator developed by Kushch et al. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 68: Variation of carbon monoxide concentration with the concentration of excess air in the fuel⧸air mixture. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Fig. 69: Flue loss as a function of excess air in the air⧸fuel mixture. Three different fuel input rates are shown. Reproduced by permission of the American Institute of Physics, and the author(s) [108].</note>
<note type="content">Table 1: The Lanthanide Series</note>
<note type="content">Table 2: Variation of the power density output and efficiency of diffused-junction GaSb TPV converters for various radiator temperatures [2]</note>
<note type="content">Table 3: Parameters of an eight-subcell MIM, measured at various operating temperatures [70]</note>
<note type="content">Table 4: Measured and modeled heat fluxes on a 4 × 4 array of cells. The first line shows the result for the single surface filter; the second shows the result for the tandem filter [98]</note>
<note type="content">Table 5: Design specifications for the existing and advanced prototype TPV generators [104]</note>
<note type="content">Table 6: Thermal efficiency of erbia radiators. These data show that the efficiency of conversion of fuel to photons is approximately 16–17% [38]</note>
<note type="content">Table 7: Variation of the incident optical power on the PV array as a function of the input fuel power [38]</note>
<relatedItem type="host">
<titleInfo>
<title>Renewable and Sustainable Energy Reviews</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>RSER</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199906</dateIssued>
</originInfo>
<identifier type="ISSN">1364-0321</identifier>
<identifier type="PII">S1364-0321(00)X0005-6</identifier>
<part>
<date>199906</date>
<detail type="volume">
<number>3</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2–3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>77</start>
<end>242</end>
</extent>
<extent unit="pages">
<start>77</start>
<end>184</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">B8813EEB1533AF94D61E97ED505557B259334D0A</identifier>
<identifier type="ark">ark:/67375/6H6-58XC5RD3-C</identifier>
<identifier type="DOI">10.1016/S1364-0321(98)00021-5</identifier>
<identifier type="PII">S1364-0321(98)00021-5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1998 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©1998</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/B8813EEB1533AF94D61E97ED505557B259334D0A/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002884 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002884 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B8813EEB1533AF94D61E97ED505557B259334D0A
   |texte=   A review of progress in thermophotovoltaic generation of electricity
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024