Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neural stimulation with optical radiation

Identifieur interne : 001E36 ( Istex/Corpus ); précédent : 001E35; suivant : 001E37

Neural stimulation with optical radiation

Auteurs : C. Richter ; A. I. Matic ; J. D. Wells ; E. D. Jansen ; J. T. Walsh

Source :

RBID : ISTEX:88E33FF8E3A9494BD3628B7A0769C92886EEB90C

English descriptors

Abstract

This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.

Url:
DOI: 10.1002/lpor.200900044

Links to Exploration step

ISTEX:88E33FF8E3A9494BD3628B7A0769C92886EEB90C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neural stimulation with optical radiation</title>
<author>
<name sortKey="Richter, C" sort="Richter, C" uniqKey="Richter C" first="C." last="Richter">C. Richter</name>
<affiliation>
<mods:affiliation>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: cri529@northwestern.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matic, A I" sort="Matic, A I" uniqKey="Matic A" first="A. I." last="Matic">A. I. Matic</name>
<affiliation>
<mods:affiliation>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wells, J D" sort="Wells, J D" uniqKey="Wells J" first="J. D." last="Wells">J. D. Wells</name>
<affiliation>
<mods:affiliation>Lockheed Martin Aculight Corporation, Bothell, WA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jansen, E D" sort="Jansen, E D" uniqKey="Jansen E" first="E. D." last="Jansen">E. D. Jansen</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walsh, J T" sort="Walsh, J T" uniqKey="Walsh J" first="J. T." last="Walsh">J. T. Walsh</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:88E33FF8E3A9494BD3628B7A0769C92886EEB90C</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/lpor.200900044</idno>
<idno type="url">https://api.istex.fr/document/88E33FF8E3A9494BD3628B7A0769C92886EEB90C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001E36</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001E36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Neural stimulation with optical radiation</title>
<author>
<name sortKey="Richter, C" sort="Richter, C" uniqKey="Richter C" first="C." last="Richter">C. Richter</name>
<affiliation>
<mods:affiliation>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: cri529@northwestern.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matic, A I" sort="Matic, A I" uniqKey="Matic A" first="A. I." last="Matic">A. I. Matic</name>
<affiliation>
<mods:affiliation>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wells, J D" sort="Wells, J D" uniqKey="Wells J" first="J. D." last="Wells">J. D. Wells</name>
<affiliation>
<mods:affiliation>Lockheed Martin Aculight Corporation, Bothell, WA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jansen, E D" sort="Jansen, E D" uniqKey="Jansen E" first="E. D." last="Jansen">E. D. Jansen</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walsh, J T" sort="Walsh, J T" uniqKey="Walsh J" first="J. T." last="Walsh">J. T. Walsh</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Laser & Photonics Reviews</title>
<title level="j" type="alt">LASER PHOTONICS REVIEWS</title>
<idno type="ISSN">1863-8880</idno>
<idno type="eISSN">1863-8899</idno>
<imprint>
<biblScope unit="vol">5</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="68">68</biblScope>
<biblScope unit="page" to="80">80</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2011-01-03">2011-01-03</date>
</imprint>
<idno type="ISSN">1863-8880</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1863-8880</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ablation threshold</term>
<term>Acoustic</term>
<term>Acoustic stimulation</term>
<term>Acoustic tones</term>
<term>Action potentials</term>
<term>Afferent</term>
<term>Auditory</term>
<term>Auditory brainstem response</term>
<term>Auditory nerve</term>
<term>Auditory neurons</term>
<term>Auditory system</term>
<term>Biological tissue</term>
<term>Biomed</term>
<term>Biomedical</term>
<term>Biomedical engineering</term>
<term>Biomedical optics</term>
<term>Canal afferents</term>
<term>Cell membrane</term>
<term>Central auditory system</term>
<term>Cochlea</term>
<term>Cochlear</term>
<term>Cochlear implants</term>
<term>Communication sciences</term>
<term>Compound action</term>
<term>Compound muscle action potentials</term>
<term>Depolarization</term>
<term>Diode</term>
<term>Diode laser</term>
<term>Diode lasers</term>
<term>Direct induction</term>
<term>Discharge rate</term>
<term>Duco jansen</term>
<term>Eighth nerve</term>
<term>Electrical stimulation</term>
<term>Electrical stimulation threshold</term>
<term>Electrochemical junction</term>
<term>Endogenous chromophores</term>
<term>Excitatory phase</term>
<term>Facial</term>
<term>Facial muscles</term>
<term>Facial nerve</term>
<term>Facial nerve trunk</term>
<term>Foremost advantage</term>
<term>Ganglion</term>
<term>Gerbil</term>
<term>Gmbh</term>
<term>Hair cells</term>
<term>Hene laser</term>
<term>Ieee trans</term>
<term>Inferior colliculus</term>
<term>Infrared laser</term>
<term>Infrared nerve stimulation</term>
<term>Infrared radiation</term>
<term>Izzo</term>
<term>Jansen</term>
<term>Johann wolfgang</term>
<term>Kgaa</term>
<term>Konrad</term>
<term>Laser</term>
<term>Laser irradiation</term>
<term>Laser parameters</term>
<term>Laser pulses</term>
<term>Laser radiation</term>
<term>Laser spot radius</term>
<term>Laser stimulation</term>
<term>Laser surg</term>
<term>Lasers surg</term>
<term>Latency</term>
<term>Levator nasolabialis</term>
<term>Lippincott williams wilkins</term>
<term>Matic</term>
<term>Molecular delivery</term>
<term>Monotonic increase</term>
<term>Nerve</term>
<term>Nerve cells</term>
<term>Nerve center</term>
<term>Nerve damage</term>
<term>Neural</term>
<term>Neural activity</term>
<term>Neural depolarization</term>
<term>Neural function</term>
<term>Neural prosthesis</term>
<term>Neural responses</term>
<term>Neural stimulation</term>
<term>Neural tissue</term>
<term>Neuron</term>
<term>Neurosci</term>
<term>Northwestern university</term>
<term>Online color</term>
<term>Optical</term>
<term>Optical energy</term>
<term>Optical parameters</term>
<term>Optical path</term>
<term>Optical power density</term>
<term>Optical pulse</term>
<term>Optical radiation</term>
<term>Optical radiation figure</term>
<term>Optical stimulation</term>
<term>Other hand</term>
<term>Other researchers</term>
<term>Other words</term>
<term>Parameter space</term>
<term>Penetrating electrodes</term>
<term>Penetration depth</term>
<term>Peripheral nerves</term>
<term>Photochemical reaction</term>
<term>Photonics</term>
<term>Possible mechanisms</term>
<term>Primary mechanism</term>
<term>Proc</term>
<term>Prosthesis</term>
<term>Pulse</term>
<term>Pulse duration</term>
<term>Pulse durations</term>
<term>Radiant energy</term>
<term>Radiant exposure</term>
<term>Radiant exposures</term>
<term>Radiation energy</term>
<term>Radiation wavelength</term>
<term>Radiation wavelengths</term>
<term>Recent review</term>
<term>Repetition rate</term>
<term>Response area</term>
<term>Review article laser photonics</term>
<term>Richter</term>
<term>Right panel</term>
<term>Sciatic</term>
<term>Sciatic nerve</term>
<term>Sciatic nerves</term>
<term>Selective stimulation</term>
<term>Selectivity</term>
<term>Shorter pulse durations</term>
<term>Similar results</term>
<term>Spatial resolution</term>
<term>Spatial selectivity</term>
<term>Spie publications</term>
<term>Spot size</term>
<term>Stimulation</term>
<term>Stimulation source</term>
<term>Stimulation threshold</term>
<term>Stress waves</term>
<term>Subsequent experiments</term>
<term>Surg</term>
<term>Synaptic connections</term>
<term>Thermal tissue damage</term>
<term>Tissue damage</term>
<term>Tissue temperature</term>
<term>Total energy</term>
<term>Transient temperature increase</term>
<term>Vanderbilt university</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vestibular</term>
<term>Vestibular nerve</term>
<term>Vestibular prostheses</term>
<term>Vestibular system</term>
<term>Water absorption</term>
<term>Water absorption curve</term>
<term>Wavelength</term>
<term>Weinheim</term>
<term>Weinheim laser photonics reviews</term>
<term>Weinheim review article laser photonics</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Ablation threshold</term>
<term>Acoustic</term>
<term>Acoustic stimulation</term>
<term>Acoustic tones</term>
<term>Action potentials</term>
<term>Afferent</term>
<term>Auditory</term>
<term>Auditory brainstem response</term>
<term>Auditory nerve</term>
<term>Auditory neurons</term>
<term>Auditory system</term>
<term>Biological tissue</term>
<term>Biomed</term>
<term>Biomedical</term>
<term>Biomedical engineering</term>
<term>Biomedical optics</term>
<term>Canal afferents</term>
<term>Cell membrane</term>
<term>Central auditory system</term>
<term>Cochlea</term>
<term>Cochlear</term>
<term>Cochlear implants</term>
<term>Communication sciences</term>
<term>Compound action</term>
<term>Compound muscle action potentials</term>
<term>Depolarization</term>
<term>Diode</term>
<term>Diode laser</term>
<term>Diode lasers</term>
<term>Direct induction</term>
<term>Discharge rate</term>
<term>Duco jansen</term>
<term>Eighth nerve</term>
<term>Electrical stimulation</term>
<term>Electrical stimulation threshold</term>
<term>Electrochemical junction</term>
<term>Endogenous chromophores</term>
<term>Excitatory phase</term>
<term>Facial</term>
<term>Facial muscles</term>
<term>Facial nerve</term>
<term>Facial nerve trunk</term>
<term>Foremost advantage</term>
<term>Ganglion</term>
<term>Gerbil</term>
<term>Gmbh</term>
<term>Hair cells</term>
<term>Hene laser</term>
<term>Ieee trans</term>
<term>Inferior colliculus</term>
<term>Infrared laser</term>
<term>Infrared nerve stimulation</term>
<term>Infrared radiation</term>
<term>Izzo</term>
<term>Jansen</term>
<term>Johann wolfgang</term>
<term>Kgaa</term>
<term>Konrad</term>
<term>Laser</term>
<term>Laser irradiation</term>
<term>Laser parameters</term>
<term>Laser pulses</term>
<term>Laser radiation</term>
<term>Laser spot radius</term>
<term>Laser stimulation</term>
<term>Laser surg</term>
<term>Lasers surg</term>
<term>Latency</term>
<term>Levator nasolabialis</term>
<term>Lippincott williams wilkins</term>
<term>Matic</term>
<term>Molecular delivery</term>
<term>Monotonic increase</term>
<term>Nerve</term>
<term>Nerve cells</term>
<term>Nerve center</term>
<term>Nerve damage</term>
<term>Neural</term>
<term>Neural activity</term>
<term>Neural depolarization</term>
<term>Neural function</term>
<term>Neural prosthesis</term>
<term>Neural responses</term>
<term>Neural stimulation</term>
<term>Neural tissue</term>
<term>Neuron</term>
<term>Neurosci</term>
<term>Northwestern university</term>
<term>Online color</term>
<term>Optical</term>
<term>Optical energy</term>
<term>Optical parameters</term>
<term>Optical path</term>
<term>Optical power density</term>
<term>Optical pulse</term>
<term>Optical radiation</term>
<term>Optical radiation figure</term>
<term>Optical stimulation</term>
<term>Other hand</term>
<term>Other researchers</term>
<term>Other words</term>
<term>Parameter space</term>
<term>Penetrating electrodes</term>
<term>Penetration depth</term>
<term>Peripheral nerves</term>
<term>Photochemical reaction</term>
<term>Photonics</term>
<term>Possible mechanisms</term>
<term>Primary mechanism</term>
<term>Proc</term>
<term>Prosthesis</term>
<term>Pulse</term>
<term>Pulse duration</term>
<term>Pulse durations</term>
<term>Radiant energy</term>
<term>Radiant exposure</term>
<term>Radiant exposures</term>
<term>Radiation energy</term>
<term>Radiation wavelength</term>
<term>Radiation wavelengths</term>
<term>Recent review</term>
<term>Repetition rate</term>
<term>Response area</term>
<term>Review article laser photonics</term>
<term>Richter</term>
<term>Right panel</term>
<term>Sciatic</term>
<term>Sciatic nerve</term>
<term>Sciatic nerves</term>
<term>Selective stimulation</term>
<term>Selectivity</term>
<term>Shorter pulse durations</term>
<term>Similar results</term>
<term>Spatial resolution</term>
<term>Spatial selectivity</term>
<term>Spie publications</term>
<term>Spot size</term>
<term>Stimulation</term>
<term>Stimulation source</term>
<term>Stimulation threshold</term>
<term>Stress waves</term>
<term>Subsequent experiments</term>
<term>Surg</term>
<term>Synaptic connections</term>
<term>Thermal tissue damage</term>
<term>Tissue damage</term>
<term>Tissue temperature</term>
<term>Total energy</term>
<term>Transient temperature increase</term>
<term>Vanderbilt university</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vestibular</term>
<term>Vestibular nerve</term>
<term>Vestibular prostheses</term>
<term>Vestibular system</term>
<term>Water absorption</term>
<term>Water absorption curve</term>
<term>Wavelength</term>
<term>Weinheim</term>
<term>Weinheim laser photonics reviews</term>
<term>Weinheim review article laser photonics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>laser</json:string>
<json:string>neuron</json:string>
<json:string>optical stimulation</json:string>
<json:string>neural stimulation</json:string>
<json:string>sciatic</json:string>
<json:string>auditory</json:string>
<json:string>richter</json:string>
<json:string>cochlea</json:string>
<json:string>cochlear</json:string>
<json:string>prosthesis</json:string>
<json:string>photonics</json:string>
<json:string>weinheim</json:string>
<json:string>sciatic nerve</json:string>
<json:string>gmbh</json:string>
<json:string>vestibular</json:string>
<json:string>verlag gmbh</json:string>
<json:string>kgaa</json:string>
<json:string>optical radiation</json:string>
<json:string>verlag</json:string>
<json:string>biomedical</json:string>
<json:string>electrical stimulation</json:string>
<json:string>matic</json:string>
<json:string>biomed</json:string>
<json:string>depolarization</json:string>
<json:string>biomedical engineering</json:string>
<json:string>surg</json:string>
<json:string>proc</json:string>
<json:string>izzo</json:string>
<json:string>neural</json:string>
<json:string>neural responses</json:string>
<json:string>neurosci</json:string>
<json:string>diode</json:string>
<json:string>latency</json:string>
<json:string>ganglion</json:string>
<json:string>gerbil</json:string>
<json:string>radiant exposures</json:string>
<json:string>photochemical reaction</json:string>
<json:string>stimulation</json:string>
<json:string>jansen</json:string>
<json:string>northwestern university</json:string>
<json:string>weinheim laser photonics reviews</json:string>
<json:string>stimulation threshold</json:string>
<json:string>radiation energy</json:string>
<json:string>pulse durations</json:string>
<json:string>repetition rate</json:string>
<json:string>neural activity</json:string>
<json:string>infrared radiation</json:string>
<json:string>pulse duration</json:string>
<json:string>tissue damage</json:string>
<json:string>laser surg</json:string>
<json:string>laser irradiation</json:string>
<json:string>laser stimulation</json:string>
<json:string>radiant exposure</json:string>
<json:string>selective stimulation</json:string>
<json:string>afferent</json:string>
<json:string>water absorption</json:string>
<json:string>review article laser photonics</json:string>
<json:string>optical path</json:string>
<json:string>optical energy</json:string>
<json:string>neural depolarization</json:string>
<json:string>auditory nerve</json:string>
<json:string>neural tissue</json:string>
<json:string>facial nerve</json:string>
<json:string>ieee trans</json:string>
<json:string>cochlear implants</json:string>
<json:string>diode laser</json:string>
<json:string>vanderbilt university</json:string>
<json:string>spatial selectivity</json:string>
<json:string>acoustic</json:string>
<json:string>selectivity</json:string>
<json:string>konrad</json:string>
<json:string>wavelength</json:string>
<json:string>action potentials</json:string>
<json:string>levator nasolabialis</json:string>
<json:string>lasers surg</json:string>
<json:string>cell membrane</json:string>
<json:string>inferior colliculus</json:string>
<json:string>compound muscle action potentials</json:string>
<json:string>monotonic increase</json:string>
<json:string>electrical stimulation threshold</json:string>
<json:string>peripheral nerves</json:string>
<json:string>vestibular system</json:string>
<json:string>optical pulse</json:string>
<json:string>spot size</json:string>
<json:string>spatial resolution</json:string>
<json:string>auditory system</json:string>
<json:string>radiant energy</json:string>
<json:string>facial nerve trunk</json:string>
<json:string>laser parameters</json:string>
<json:string>compound action</json:string>
<json:string>radiation wavelengths</json:string>
<json:string>vestibular nerve</json:string>
<json:string>nerve</json:string>
<json:string>facial</json:string>
<json:string>right panel</json:string>
<json:string>spie publications</json:string>
<json:string>electrochemical junction</json:string>
<json:string>infrared nerve stimulation</json:string>
<json:string>water absorption curve</json:string>
<json:string>ablation threshold</json:string>
<json:string>thermal tissue damage</json:string>
<json:string>infrared laser</json:string>
<json:string>online color</json:string>
<json:string>primary mechanism</json:string>
<json:string>possible mechanisms</json:string>
<json:string>recent review</json:string>
<json:string>facial muscles</json:string>
<json:string>endogenous chromophores</json:string>
<json:string>optical radiation figure</json:string>
<json:string>hene laser</json:string>
<json:string>lippincott williams wilkins</json:string>
<json:string>synaptic connections</json:string>
<json:string>sciatic nerves</json:string>
<json:string>duco jansen</json:string>
<json:string>foremost advantage</json:string>
<json:string>tissue temperature</json:string>
<json:string>nerve center</json:string>
<json:string>neural function</json:string>
<json:string>laser spot radius</json:string>
<json:string>acoustic tones</json:string>
<json:string>laser pulses</json:string>
<json:string>similar results</json:string>
<json:string>penetration depth</json:string>
<json:string>radiation wavelength</json:string>
<json:string>vestibular prostheses</json:string>
<json:string>optical parameters</json:string>
<json:string>eighth nerve</json:string>
<json:string>biomedical optics</json:string>
<json:string>acoustic stimulation</json:string>
<json:string>response area</json:string>
<json:string>nerve cells</json:string>
<json:string>diode lasers</json:string>
<json:string>laser radiation</json:string>
<json:string>stimulation source</json:string>
<json:string>subsequent experiments</json:string>
<json:string>canal afferents</json:string>
<json:string>excitatory phase</json:string>
<json:string>hair cells</json:string>
<json:string>discharge rate</json:string>
<json:string>other hand</json:string>
<json:string>central auditory system</json:string>
<json:string>nerve damage</json:string>
<json:string>weinheim review article laser photonics</json:string>
<json:string>stress waves</json:string>
<json:string>transient temperature increase</json:string>
<json:string>shorter pulse durations</json:string>
<json:string>other words</json:string>
<json:string>total energy</json:string>
<json:string>molecular delivery</json:string>
<json:string>neural prosthesis</json:string>
<json:string>penetrating electrodes</json:string>
<json:string>communication sciences</json:string>
<json:string>optical power density</json:string>
<json:string>johann wolfgang</json:string>
<json:string>biological tissue</json:string>
<json:string>auditory brainstem response</json:string>
<json:string>direct induction</json:string>
<json:string>parameter space</json:string>
<json:string>auditory neurons</json:string>
<json:string>other researchers</json:string>
<json:string>pulse</json:string>
<json:string>optical</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>C.‐P. Richter</name>
<affiliations>
<json:string>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA</json:string>
<json:string>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>A.I. Matic</name>
<affiliations>
<json:string>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</json:string>
<json:string>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>J.D. Wells</name>
<affiliations>
<json:string>Lockheed Martin Aculight Corporation, Bothell, WA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>E.D. Jansen</name>
<affiliations>
<json:string>Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>J.T. Walsh</name>
<affiliations>
<json:string>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cochlea</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cochlear implants</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>deafening</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>electrical stimulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>infrared neural stimulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>laser</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>neuroprosthesis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>optical stimulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spatial selectivity.</value>
</json:item>
</subject>
<articleId>
<json:string>LPOR200900044</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.</abstract>
<qualityIndicators>
<score>6.752</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1065</abstractCharCount>
<pdfWordCount>9570</pdfWordCount>
<pdfCharCount>57098</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>146</abstractWordCount>
</qualityIndicators>
<title>Neural stimulation with optical radiation</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Laser & Photonics Reviews</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1863-8899</json:string>
</doi>
<issn>
<json:string>1863-8880</json:string>
</issn>
<eissn>
<json:string>1863-8899</json:string>
</eissn>
<publisherId>
<json:string>LPOR</json:string>
</publisherId>
<volume>5</volume>
<issue>1</issue>
<pages>
<first>68</first>
<last>80</last>
<total>13</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Review</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>physics, condensed matter</json:string>
<json:string>physics, applied</json:string>
<json:string>optics</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>optoelectronics & photonics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/lpor.200900044</json:string>
</doi>
<id>88E33FF8E3A9494BD3628B7A0769C92886EEB90C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/88E33FF8E3A9494BD3628B7A0769C92886EEB90C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/88E33FF8E3A9494BD3628B7A0769C92886EEB90C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/88E33FF8E3A9494BD3628B7A0769C92886EEB90C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Neural stimulation with optical radiation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<availability>
<licence>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</licence>
</availability>
<date type="published" when="2011-01-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Neural stimulation with optical radiation</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">C.‐P.</forename>
<surname>Richter</surname>
</persName>
<email>cri529@northwestern.edu</email>
<affiliation>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">A.I.</forename>
<surname>Matic</surname>
</persName>
<affiliation>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">J.D.</forename>
<surname>Wells</surname>
</persName>
<affiliation>Lockheed Martin Aculight Corporation, Bothell, WA, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">E.D.</forename>
<surname>Jansen</surname>
</persName>
<affiliation>Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">J.T.</forename>
<surname>Walsh</surname>
</persName>
<affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<idno type="istex">88E33FF8E3A9494BD3628B7A0769C92886EEB90C</idno>
<idno type="ark">ark:/67375/WNG-9QH3T1ST-W</idno>
<idno type="DOI">10.1002/lpor.200900044</idno>
<idno type="unit">LPOR200900044</idno>
<idno type="toTypesetVersion">file:LPOR.LPOR200900044.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Laser & Photonics Reviews</title>
<title level="j" type="alt">LASER PHOTONICS REVIEWS</title>
<idno type="pISSN">1863-8880</idno>
<idno type="eISSN">1863-8899</idno>
<idno type="book-DOI">10.1002/(ISSN)1863-8899</idno>
<idno type="book-part-DOI">10.1002/lpor.v5.1</idno>
<idno type="product">LPOR</idno>
<imprint>
<biblScope unit="vol">5</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="68">68</biblScope>
<biblScope unit="page" to="80">80</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2011-01-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and
<hi rend="italic">in vitro</hi>
preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:18638880:media:LPOR200900044:content"></media>
<media mimeType="image/gif" url="" rendition="webLoRes"></media>
<media mimeType="image/gif" url="" rendition="webOriginal"></media>
<media mimeType="image/gif" url="" rendition="webHiRes"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">Cochlea</term>
<term xml:id="kwd2">cochlear implants</term>
<term xml:id="kwd3">deafening</term>
<term xml:id="kwd4">electrical stimulation</term>
<term xml:id="kwd5">infrared neural stimulation</term>
<term xml:id="kwd6">laser</term>
<term xml:id="kwd7">neuroprosthesis</term>
<term xml:id="kwd8">optical stimulation</term>
<term xml:id="kwd9">spatial selectivity.</term>
</keywords>
<keywords rend="articleCategory">
<term>Review</term>
</keywords>
<keywords rend="tocHeading1">
<term>Reviews</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/88E33FF8E3A9494BD3628B7A0769C92886EEB90C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Berlin</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1863-8899</doi>
<issn type="print">1863-8880</issn>
<issn type="electronic">1863-8899</issn>
<idGroup>
<id type="product" value="LPOR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="LASER PHOTONICS REVIEWS">Laser & Photonics Reviews</title>
<title type="short">Laser & Photon. Rev.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/lpor.v5.1</doi>
<numberingGroup>
<numbering type="journalVolume" number="5">5</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2011-01-03">January 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="11" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/lpor.200900044</doi>
<idGroup>
<id type="unit" value="LPOR200900044"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Review</title>
<title type="tocHeading1">Reviews</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-08-26"></event>
<event type="manuscriptRevised" date="2010-03-29"></event>
<event type="manuscriptAccepted" date="2010-04-08"></event>
<event type="firstOnline" date="2010-12-27"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2010-06-07"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.4.2 mode:FullText" date="2010-12-27"></event>
<event type="publishedOnlineFinalForm" date="2010-12-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">68</numbering>
<numbering type="pageLast">80</numbering>
</numberingGroup>
<correspondenceTo>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:LPOR.LPOR200900044.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="94"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Neural stimulation with optical radiation</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#a3" corresponding="yes">
<personName>
<givenNames>C.‐P.</givenNames>
<familyName>Richter</familyName>
</personName>
<contactDetails>
<email>cri529@northwestern.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#a1 #a2">
<personName>
<givenNames>A.I.</givenNames>
<familyName>Matic</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#a4">
<personName>
<givenNames>J.D.</givenNames>
<familyName>Wells</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#a5">
<personName>
<givenNames>E.D.</givenNames>
<familyName>Jansen</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>J.T.</givenNames>
<familyName>Walsh</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US" type="organization">
<unparsedAffiliation>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="US" type="organization">
<unparsedAffiliation>Lockheed Martin Aculight Corporation, Bothell, WA, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Cochlea</keyword>
<keyword xml:id="kwd2">cochlear implants</keyword>
<keyword xml:id="kwd3">deafening</keyword>
<keyword xml:id="kwd4">electrical stimulation</keyword>
<keyword xml:id="kwd5">infrared neural stimulation</keyword>
<keyword xml:id="kwd6">laser</keyword>
<keyword xml:id="kwd7">neuroprosthesis</keyword>
<keyword xml:id="kwd8">optical stimulation</keyword>
<keyword xml:id="kwd9">spatial selectivity.</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services</fundingAgency>
<fundingNumber>HHSN260‐2006‐00006‐C / NIH No. N01‐DC‐6‐0006, NIH grant 1R41DC008515‐01, NIH grant F31 DC008246‐01</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and
<i>in vitro</i>
preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="WILEY-VCH" href="urn:x-wiley:18638880:media:LPOR200900044:content"></mediaResource>
<mediaResource alt="thumbnail image" rendition="webLoRes" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="original image" rendition="webOriginal" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="magnified image" rendition="webHiRes" mimeType="image/gif" href=""></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Neural stimulation with optical radiation</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Neural stimulation with optical radiation</title>
</titleInfo>
<name type="personal">
<namePart type="given">C.‐P.</namePart>
<namePart type="family">Richter</namePart>
<affiliation>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA</affiliation>
<affiliation>E-mail: cri529@northwestern.edu</affiliation>
<affiliation>Correspondence address: Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.I.</namePart>
<namePart type="family">Matic</namePart>
<affiliation>Department of Otolaryngology, Feinberg Medical School, Northwestern University, Searle Building 12‐470, 303 E. Chicago Avenue, Chicago, IL 60611‐3008, USA</affiliation>
<affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.D.</namePart>
<namePart type="family">Wells</namePart>
<affiliation>Lockheed Martin Aculight Corporation, Bothell, WA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.D.</namePart>
<namePart type="family">Jansen</namePart>
<affiliation>Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.T.</namePart>
<namePart type="family">Walsh</namePart>
<affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Berlin</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-01-03</dateIssued>
<dateCaptured encoding="w3cdtf">2009-08-26</dateCaptured>
<dateValid encoding="w3cdtf">2010-04-08</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">8</extent>
<extent unit="tables">1</extent>
<extent unit="references">94</extent>
</physicalDescription>
<abstract lang="en">This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.</abstract>
<abstract type="graphical" lang="en">This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations.</abstract>
<note type="funding">National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services - HHSN260‐2006‐00006‐C / NIH No. N01‐DC‐6‐0006, NIH grant 1R41DC008515‐01, NIH grant F31 DC008246‐01; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>Cochlea</topic>
<topic>cochlear implants</topic>
<topic>deafening</topic>
<topic>electrical stimulation</topic>
<topic>infrared neural stimulation</topic>
<topic>laser</topic>
<topic>neuroprosthesis</topic>
<topic>optical stimulation</topic>
<topic>spatial selectivity.</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Laser & Photonics Reviews</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Laser & Photon. Rev.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Review</topic>
</subject>
<identifier type="ISSN">1863-8880</identifier>
<identifier type="eISSN">1863-8899</identifier>
<identifier type="DOI">10.1002/(ISSN)1863-8899</identifier>
<identifier type="PublisherID">LPOR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>68</start>
<end>80</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">88E33FF8E3A9494BD3628B7A0769C92886EEB90C</identifier>
<identifier type="ark">ark:/67375/WNG-9QH3T1ST-W</identifier>
<identifier type="DOI">10.1002/lpor.200900044</identifier>
<identifier type="ArticleID">LPOR200900044</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/88E33FF8E3A9494BD3628B7A0769C92886EEB90C/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001E36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:88E33FF8E3A9494BD3628B7A0769C92886EEB90C
   |texte=   Neural stimulation with optical radiation
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024