Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NMR structures of paramagnetic metalloproteins

Identifieur interne : 001D43 ( Istex/Corpus ); précédent : 001D42; suivant : 001D44

NMR structures of paramagnetic metalloproteins

Auteurs : Fabio Arnesano ; Lucia Banci ; Mario Piccioli

Source :

RBID : ISTEX:848D110369D8327A18C3F2494E89C5B4693E975A

Abstract

1. Introduction 168 1.1 Genomic annotation of metalloproteins 168 1.2 Why NMR structures? 168 1.3 Why paramagnetic metalloproteins? 169 2. General theory 170 2.1 Nuclear and electron spins 170 2.2 Hyperfine coupling 171 2.3 The effect of the hyperfine coupling on the NMR shift: the hyperfine shift 173 2.4 The effect of the hyperfine coupling on nuclear relaxation 174 2.5 Interplay between electron spin properties and features of the NMR spectra 178 3. Paramagnetism-based structural restraints 180 3.1 Contact shifts and relaxation rates as restraints 181 3.2 Locating the metal ion within the protein frame: pseudocontact shifts 184 3.3 Cross-correlation rates 186 3.4 Residual dipolar couplings 188 3.5 Interplay between different restraints 190 4. NMR without 1 H detection 191 4.1 The protocol for 13C-detected protonless assignment of backbone and side-chains 194 4.2 Protonless heteronuclear NMR experiments tailored to paramagnetic systems 196 5. The use of lanthanides as paramagnetic probes 198 6. The case of Cu(II) proteins 202 7. Perspectives 208 8. Acknowledgments 209 9. References 209 Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as interactions with their partners. Formerly considered as unfeasible, the first structure in solution by nuclear magnetic resonance (NMR) of a paramagnetic protein was obtained in 1994. Methodological and instrumental advancements pursued over the last decade are such that NMR structure of paramagnetic proteins may be now routinely obtained. We focus here on approaches and problems related to the structure determination of paramagnetic proteins in solution through NMR spectroscopy. After a survey of the background theory, we show how the effects produced by the presence of a paramagnetic metal ion on the NMR parameters, which are in many cases deleterious for the detection of NMR spectra, can be overcome and turned into an additional source of structural restraints. We also briefly address features and perspectives given by the use of 13C-detected protonless NMR spectroscopy for proteins in solution. The structural information obtained through the exploitation of a paramagnetic center are discussed for some Cu2+-binding proteins and for Ca2+-binding proteins, where the replacement of a diamagnetic metal ion with suitable paramagnetic metal ions suggests novel approaches to the structural characterization of proteins containing diamagnetic and NMR-silent metal ions.

Url:
DOI: 10.1017/S0033583506004161

Links to Exploration step

ISTEX:848D110369D8327A18C3F2494E89C5B4693E975A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>NMR structures of paramagnetic metalloproteins</title>
<author>
<name sortKey="Arnesano, Fabio" sort="Arnesano, Fabio" uniqKey="Arnesano F" first="Fabio" last="Arnesano">Fabio Arnesano</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Banci, Lucia" sort="Banci, Lucia" uniqKey="Banci L" first="Lucia" last="Banci">Lucia Banci</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Piccioli, Mario" sort="Piccioli, Mario" uniqKey="Piccioli M" first="Mario" last="Piccioli">Mario Piccioli</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:848D110369D8327A18C3F2494E89C5B4693E975A</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1017/S0033583506004161</idno>
<idno type="url">https://api.istex.fr/document/848D110369D8327A18C3F2494E89C5B4693E975A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D43</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">NMR structures of paramagnetic metalloproteins</title>
<author>
<name sortKey="Arnesano, Fabio" sort="Arnesano, Fabio" uniqKey="Arnesano F" first="Fabio" last="Arnesano">Fabio Arnesano</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Banci, Lucia" sort="Banci, Lucia" uniqKey="Banci L" first="Lucia" last="Banci">Lucia Banci</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Piccioli, Mario" sort="Piccioli, Mario" uniqKey="Piccioli M" first="Mario" last="Piccioli">Mario Piccioli</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Quarterly Reviews of Biophysics</title>
<idno type="ISSN">0033-5835</idno>
<idno type="eISSN">1469-8994</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>New York, USA</pubPlace>
<date type="published" when="2005-05">2005-05</date>
<biblScope unit="volume">38</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="167">167</biblScope>
<biblScope unit="page" to="219">219</biblScope>
</imprint>
<idno type="ISSN">0033-5835</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0033-5835</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">1. Introduction 168 1.1 Genomic annotation of metalloproteins 168 1.2 Why NMR structures? 168 1.3 Why paramagnetic metalloproteins? 169 2. General theory 170 2.1 Nuclear and electron spins 170 2.2 Hyperfine coupling 171 2.3 The effect of the hyperfine coupling on the NMR shift: the hyperfine shift 173 2.4 The effect of the hyperfine coupling on nuclear relaxation 174 2.5 Interplay between electron spin properties and features of the NMR spectra 178 3. Paramagnetism-based structural restraints 180 3.1 Contact shifts and relaxation rates as restraints 181 3.2 Locating the metal ion within the protein frame: pseudocontact shifts 184 3.3 Cross-correlation rates 186 3.4 Residual dipolar couplings 188 3.5 Interplay between different restraints 190 4. NMR without 1 H detection 191 4.1 The protocol for 13C-detected protonless assignment of backbone and side-chains 194 4.2 Protonless heteronuclear NMR experiments tailored to paramagnetic systems 196 5. The use of lanthanides as paramagnetic probes 198 6. The case of Cu(II) proteins 202 7. Perspectives 208 8. Acknowledgments 209 9. References 209 Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as interactions with their partners. Formerly considered as unfeasible, the first structure in solution by nuclear magnetic resonance (NMR) of a paramagnetic protein was obtained in 1994. Methodological and instrumental advancements pursued over the last decade are such that NMR structure of paramagnetic proteins may be now routinely obtained. We focus here on approaches and problems related to the structure determination of paramagnetic proteins in solution through NMR spectroscopy. After a survey of the background theory, we show how the effects produced by the presence of a paramagnetic metal ion on the NMR parameters, which are in many cases deleterious for the detection of NMR spectra, can be overcome and turned into an additional source of structural restraints. We also briefly address features and perspectives given by the use of 13C-detected protonless NMR spectroscopy for proteins in solution. The structural information obtained through the exploitation of a paramagnetic center are discussed for some Cu2+-binding proteins and for Ca2+-binding proteins, where the replacement of a diamagnetic metal ion with suitable paramagnetic metal ions suggests novel approaches to the structural characterization of proteins containing diamagnetic and NMR-silent metal ions.</div>
</front>
</TEI>
<istex>
<corpusName>cambridge</corpusName>
<author>
<json:item>
<name>Fabio Arnesano</name>
<affiliations>
<json:string>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lucia Banci</name>
<affiliations>
<json:string>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mario Piccioli</name>
<affiliations>
<json:string>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6GQ-N0PLL7BZ-H</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>1. Introduction 168 1.1 Genomic annotation of metalloproteins 168 1.2 Why NMR structures? 168 1.3 Why paramagnetic metalloproteins? 169 2. General theory 170 2.1 Nuclear and electron spins 170 2.2 Hyperfine coupling 171 2.3 The effect of the hyperfine coupling on the NMR shift: the hyperfine shift 173 2.4 The effect of the hyperfine coupling on nuclear relaxation 174 2.5 Interplay between electron spin properties and features of the NMR spectra 178 3. Paramagnetism-based structural restraints 180 3.1 Contact shifts and relaxation rates as restraints 181 3.2 Locating the metal ion within the protein frame: pseudocontact shifts 184 3.3 Cross-correlation rates 186 3.4 Residual dipolar couplings 188 3.5 Interplay between different restraints 190 4. NMR without 1 H detection 191 4.1 The protocol for 13C-detected protonless assignment of backbone and side-chains 194 4.2 Protonless heteronuclear NMR experiments tailored to paramagnetic systems 196 5. The use of lanthanides as paramagnetic probes 198 6. The case of Cu(II) proteins 202 7. Perspectives 208 8. Acknowledgments 209 9. References 209 Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as interactions with their partners. Formerly considered as unfeasible, the first structure in solution by nuclear magnetic resonance (NMR) of a paramagnetic protein was obtained in 1994. Methodological and instrumental advancements pursued over the last decade are such that NMR structure of paramagnetic proteins may be now routinely obtained. We focus here on approaches and problems related to the structure determination of paramagnetic proteins in solution through NMR spectroscopy. After a survey of the background theory, we show how the effects produced by the presence of a paramagnetic metal ion on the NMR parameters, which are in many cases deleterious for the detection of NMR spectra, can be overcome and turned into an additional source of structural restraints. We also briefly address features and perspectives given by the use of 13C-detected protonless NMR spectroscopy for proteins in solution. The structural information obtained through the exploitation of a paramagnetic center are discussed for some Cu2+-binding proteins and for Ca2+-binding proteins, where the replacement of a diamagnetic metal ion with suitable paramagnetic metal ions suggests novel approaches to the structural characterization of proteins containing diamagnetic and NMR-silent metal ions.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>26091</pdfWordCount>
<pdfCharCount>159426</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>53</pdfPageCount>
<pdfPageSize>493 x 700 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>404</abstractWordCount>
<abstractCharCount>2738</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>NMR structures of paramagnetic metalloproteins</title>
<pmid>
<json:string>16674835</json:string>
</pmid>
<pii>
<json:string>S0033583506004161</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Quarterly Reviews of Biophysics</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0033-5835</json:string>
</issn>
<eissn>
<json:string>1469-8994</json:string>
</eissn>
<publisherId>
<json:string>QRB</json:string>
</publisherId>
<volume>38</volume>
<issue>2</issue>
<pages>
<first>167</first>
<last>219</last>
<total>53</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/6GQ-N0PLL7BZ-H</json:string>
</ark>
<publicationDate>2005</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1017/S0033583506004161</json:string>
</doi>
<id>848D110369D8327A18C3F2494E89C5B4693E975A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/848D110369D8327A18C3F2494E89C5B4693E975A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/848D110369D8327A18C3F2494E89C5B4693E975A/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/848D110369D8327A18C3F2494E89C5B4693E975A/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/848D110369D8327A18C3F2494E89C5B4693E975A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">NMR structures of paramagnetic metalloproteins</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Cambridge University Press</publisher>
<pubPlace>New York, USA</pubPlace>
<availability>
<licence>
<p>2006 Cambridge University Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</p>
</availability>
<date>2006-05-04</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">NMR structures of paramagnetic metalloproteins</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Fabio</forename>
<surname>Arnesano</surname>
</persName>
<affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Lucia</forename>
<surname>Banci</surname>
</persName>
<affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Mario</forename>
<surname>Piccioli</surname>
</persName>
<affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</affiliation>
</author>
<idno type="istex">848D110369D8327A18C3F2494E89C5B4693E975A</idno>
<idno type="ark">ark:/67375/6GQ-N0PLL7BZ-H</idno>
<idno type="DOI">10.1017/S0033583506004161</idno>
<idno type="PII">S0033583506004161</idno>
<idno type="PMID">16674835</idno>
</analytic>
<monogr>
<title level="j">Quarterly Reviews of Biophysics</title>
<idno type="pISSN">0033-5835</idno>
<idno type="eISSN">1469-8994</idno>
<idno type="publisher-id">QRB</idno>
<imprint>
<publisher>Cambridge University Press</publisher>
<pubPlace>New York, USA</pubPlace>
<date type="published" when="2005-05"></date>
<biblScope unit="volume">38</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="167">167</biblScope>
<biblScope unit="page" to="219">219</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006-05-04</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>1. Introduction 168 1.1 Genomic annotation of metalloproteins 168 1.2 Why NMR structures? 168 1.3 Why paramagnetic metalloproteins? 169 2. General theory 170 2.1 Nuclear and electron spins 170 2.2 Hyperfine coupling 171 2.3 The effect of the hyperfine coupling on the NMR shift: the hyperfine shift 173 2.4 The effect of the hyperfine coupling on nuclear relaxation 174 2.5 Interplay between electron spin properties and features of the NMR spectra 178 3. Paramagnetism-based structural restraints 180 3.1 Contact shifts and relaxation rates as restraints 181 3.2 Locating the metal ion within the protein frame: pseudocontact shifts 184 3.3 Cross-correlation rates 186 3.4 Residual dipolar couplings 188 3.5 Interplay between different restraints 190 4. NMR without 1 H detection 191 4.1 The protocol for 13C-detected protonless assignment of backbone and side-chains 194 4.2 Protonless heteronuclear NMR experiments tailored to paramagnetic systems 196 5. The use of lanthanides as paramagnetic probes 198 6. The case of Cu(II) proteins 202 7. Perspectives 208 8. Acknowledgments 209 9. References 209 Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as interactions with their partners. Formerly considered as unfeasible, the first structure in solution by nuclear magnetic resonance (NMR) of a paramagnetic protein was obtained in 1994. Methodological and instrumental advancements pursued over the last decade are such that NMR structure of paramagnetic proteins may be now routinely obtained. We focus here on approaches and problems related to the structure determination of paramagnetic proteins in solution through NMR spectroscopy. After a survey of the background theory, we show how the effects produced by the presence of a paramagnetic metal ion on the NMR parameters, which are in many cases deleterious for the detection of NMR spectra, can be overcome and turned into an additional source of structural restraints. We also briefly address features and perspectives given by the use of 13C-detected protonless NMR spectroscopy for proteins in solution. The structural information obtained through the exploitation of a paramagnetic center are discussed for some Cu2+-binding proteins and for Ca2+-binding proteins, where the replacement of a diamagnetic metal ion with suitable paramagnetic metal ions suggests novel approaches to the structural characterization of proteins containing diamagnetic and NMR-silent metal ions.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2006-05-04">Created</change>
<change when="2005-05">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-09-5">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus cambridge not found" wicri:toSee="no header">
<istex:xmlDeclaration>version='1.0' encoding='UTF-8'</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.0 20120330//EN" URI="JATS-journalpublishing1.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article dtd-version="1.0" article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">QRB</journal-id>
<journal-title-group>
<journal-title>Quarterly Reviews of Biophysics</journal-title>
<journal-subtitle>A Review Journal of Biological Function, Structure and Mechanism</journal-subtitle>
<abbrev-journal-title>Quart. Rev. Biophys.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="epub">1469-8994</issn>
<issn pub-type="ppub">0033-5835</issn>
<publisher>
<publisher-name>Cambridge University Press</publisher-name>
<publisher-loc>New York, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pii">S0033583506004161</article-id>
<article-id pub-id-type="pmid">16674835</article-id>
<article-id pub-id-type="doi">10.1017/S0033583506004161</article-id>
<title-group>
<article-title>NMR structures of paramagnetic metalloproteins</article-title>
</title-group>
<contrib-group>
<contrib>
<name>
<surname>Arnesano</surname>
<given-names>Fabio</given-names>
</name>
<aff>Magnetic Resonance Center (CERM) and Department of Chemistry,
<institution>University of Florence</institution>
,
<country>Italy</country>
</aff>
</contrib>
<contrib>
<name>
<surname>Banci</surname>
<given-names>Lucia</given-names>
</name>
<aff>Magnetic Resonance Center (CERM) and Department of Chemistry,
<institution>University of Florence</institution>
,
<country>Italy</country>
</aff>
</contrib>
<contrib>
<name>
<surname>Piccioli</surname>
<given-names>Mario</given-names>
</name>
<aff>Magnetic Resonance Center (CERM) and Department of Chemistry,
<institution>University of Florence</institution>
,
<country>Italy</country>
</aff>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<day>04</day>
<month>05</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="ppub">
<month>5</month>
<year>2005</year>
</pub-date>
<volume>38</volume>
<issue>2</issue>
<fpage>167</fpage>
<lpage>219</lpage>
<permissions>
<copyright-statement>2006 Cambridge University Press</copyright-statement>
</permissions>
<abstract>
<p>
<bold>1. Introduction 168</bold>
</p>
<p>1.1 Genomic annotation of metalloproteins 168</p>
<p>1.2 Why NMR structures? 168</p>
<p>1.3 Why paramagnetic metalloproteins? 169</p>
<p>
<bold>2. General theory 170</bold>
</p>
<p>2.1 Nuclear and electron spins 170</p>
<p>2.2 Hyperfine coupling 171</p>
<p>2.3 The effect of the hyperfine coupling on the NMR shift: the hyperfine shift 173</p>
<p>2.4 The effect of the hyperfine coupling on nuclear relaxation 174</p>
<p>2.5 Interplay between electron spin properties and features of the NMR spectra 178</p>
<p>
<bold>3. Paramagnetism-based structural restraints 180</bold>
</p>
<p>3.1 Contact shifts and relaxation rates as restraints 181</p>
<p>3.2 Locating the metal ion within the protein frame: pseudocontact shifts 184</p>
<p>3.3 Cross-correlation rates 186</p>
<p>3.4 Residual dipolar couplings 188</p>
<p>3.5 Interplay between different restraints 190</p>
<p>
<bold>4. NMR without</bold>
<sup>
<bold>1</bold>
</sup>
<bold>H detection 191</bold>
</p>
<p>4.1 The protocol for
<sup>13</sup>
C-detected protonless assignment of backbone and side-chains 194</p>
<p>4.2 Protonless heteronuclear NMR experiments tailored to paramagnetic systems 196</p>
<p>
<bold>5. The use of lanthanides as paramagnetic probes 198</bold>
</p>
<p>
<bold>6. The case of Cu(II) proteins 202</bold>
</p>
<p>
<bold>7. Perspectives 208</bold>
</p>
<p>
<bold>8. Acknowledgments 209</bold>
</p>
<p>
<bold>9. References 209</bold>
</p>
<p>Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as interactions with their partners. Formerly considered as unfeasible, the first structure in solution by nuclear magnetic resonance (NMR) of a paramagnetic protein was obtained in 1994. Methodological and instrumental advancements pursued over the last decade are such that NMR structure of paramagnetic proteins may be now routinely obtained. We focus here on approaches and problems related to the structure determination of paramagnetic proteins in solution through NMR spectroscopy. After a survey of the background theory, we show how the effects produced by the presence of a paramagnetic metal ion on the NMR parameters, which are in many cases deleterious for the detection of NMR spectra, can be overcome and turned into an additional source of structural restraints. We also briefly address features and perspectives given by the use of
<sup>13</sup>
C-detected protonless NMR spectroscopy for proteins in solution. The structural information obtained through the exploitation of a paramagnetic center are discussed for some Cu
<sup>2+</sup>
-binding proteins and for Ca
<sup>2+</sup>
-binding proteins, where the replacement of a diamagnetic metal ion with suitable paramagnetic metal ions suggests novel approaches to the structural characterization of proteins containing diamagnetic and NMR-silent metal ions.</p>
</abstract>
<counts>
<page-count count="53"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>pdf</meta-name>
<meta-value>S0033583506004161a.pdf</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>NMR structures of paramagnetic metalloproteins</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>NMR structures of paramagnetic metalloproteins</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Arnesano</namePart>
<affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Banci</namePart>
<affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Piccioli</namePart>
<affiliation>Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Cambridge University Press</publisher>
<place>
<placeTerm type="text">New York, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-05</dateIssued>
<dateCreated encoding="w3cdtf">2006-05-04</dateCreated>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>1. Introduction 168 1.1 Genomic annotation of metalloproteins 168 1.2 Why NMR structures? 168 1.3 Why paramagnetic metalloproteins? 169 2. General theory 170 2.1 Nuclear and electron spins 170 2.2 Hyperfine coupling 171 2.3 The effect of the hyperfine coupling on the NMR shift: the hyperfine shift 173 2.4 The effect of the hyperfine coupling on nuclear relaxation 174 2.5 Interplay between electron spin properties and features of the NMR spectra 178 3. Paramagnetism-based structural restraints 180 3.1 Contact shifts and relaxation rates as restraints 181 3.2 Locating the metal ion within the protein frame: pseudocontact shifts 184 3.3 Cross-correlation rates 186 3.4 Residual dipolar couplings 188 3.5 Interplay between different restraints 190 4. NMR without 1 H detection 191 4.1 The protocol for 13C-detected protonless assignment of backbone and side-chains 194 4.2 Protonless heteronuclear NMR experiments tailored to paramagnetic systems 196 5. The use of lanthanides as paramagnetic probes 198 6. The case of Cu(II) proteins 202 7. Perspectives 208 8. Acknowledgments 209 9. References 209 Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as interactions with their partners. Formerly considered as unfeasible, the first structure in solution by nuclear magnetic resonance (NMR) of a paramagnetic protein was obtained in 1994. Methodological and instrumental advancements pursued over the last decade are such that NMR structure of paramagnetic proteins may be now routinely obtained. We focus here on approaches and problems related to the structure determination of paramagnetic proteins in solution through NMR spectroscopy. After a survey of the background theory, we show how the effects produced by the presence of a paramagnetic metal ion on the NMR parameters, which are in many cases deleterious for the detection of NMR spectra, can be overcome and turned into an additional source of structural restraints. We also briefly address features and perspectives given by the use of 13C-detected protonless NMR spectroscopy for proteins in solution. The structural information obtained through the exploitation of a paramagnetic center are discussed for some Cu2+-binding proteins and for Ca2+-binding proteins, where the replacement of a diamagnetic metal ion with suitable paramagnetic metal ions suggests novel approaches to the structural characterization of proteins containing diamagnetic and NMR-silent metal ions.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Quarterly Reviews of Biophysics</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0033-5835</identifier>
<identifier type="eISSN">1469-8994</identifier>
<identifier type="PublisherID">QRB</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>167</start>
<end>219</end>
<total>53</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">848D110369D8327A18C3F2494E89C5B4693E975A</identifier>
<identifier type="ark">ark:/67375/6GQ-N0PLL7BZ-H</identifier>
<identifier type="DOI">10.1017/S0033583506004161</identifier>
<identifier type="PII">S0033583506004161</identifier>
<identifier type="PMID">16674835</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2006 Cambridge University Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-G3RCRD03-V">cambridge</recordContentSource>
<recordOrigin>2006 Cambridge University Press</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/848D110369D8327A18C3F2494E89C5B4693E975A/metadata/json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/document/848D110369D8327A18C3F2494E89C5B4693E975A/annexes/gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001D43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:848D110369D8327A18C3F2494E89C5B4693E975A
   |texte=   NMR structures of paramagnetic metalloproteins
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024