Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)

Identifieur interne : 001B28 ( Istex/Corpus ); précédent : 001B27; suivant : 001B29

Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)

Auteurs : G. Venturini

Source :

RBID : ISTEX:7A36C677274994FF23913E89D12DB74E24CB6071

English descriptors

Abstract

Abstract: The TbMn6Ge6−xGax (0.05≤x≤0.60) and TmMn6Ge6−xGax (0.2≤x≤1.0) compounds have been studied by magnetization measurements in the temperature range 10–600 K. The TbMn6Ge6−xGax compounds order ferrimagnetically above room temperature (452≥Tc≥438 K). The low Ga content compounds (x≤0.2) display a ferri- to antiferromagnetic transition on cooling (363≥Tt≥181 K) and a second Curie point at lower temperature (49≤Tc′≤108 K). The high Ga content compounds display ferrimagnetic ordering in their whole ordered range and a spin reorientation transition at low temperature (112≤TSF≤162 K). The TmMn6Ge6−xGax compounds (x≤0.8) order antiferromagnetically above the room temperature (476≥TN≥372 K) and except TmMn6Ge5.8Ga0.2, display a ferrimagnetic ordering at lower temperature (32≤Tc≤250 K). TmMn6Ge5Ga1 is ferrimagnetic in its whole ordered range. The Ga-rich compounds (x≥0.6) display a spin reorientation process around 50 K. All the ferrimagnetic compounds display large anisotropy effects at low temperature. The coercive fields measured for TbMn6Ge5.4Ga0.6 and TmMn6Ge5Ga1 are greater than 25 and 20 kOe, respectively. The evolutions of the magnetic properties and magnetocrystalline anisotropy are discussed.

Url:
DOI: 10.1016/S0925-8388(00)01197-X

Links to Exploration step

ISTEX:7A36C677274994FF23913E89D12DB74E24CB6071

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)</title>
<author>
<name sortKey="Venturini, G" sort="Venturini, G" uniqKey="Venturini G" first="G" last="Venturini">G. Venturini</name>
<affiliation>
<mods:affiliation>Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, associé au CNRS (UMR 7555), B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: venturini@lcsm.u-nancy.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7A36C677274994FF23913E89D12DB74E24CB6071</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0925-8388(00)01197-X</idno>
<idno type="url">https://api.istex.fr/document/7A36C677274994FF23913E89D12DB74E24CB6071/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001B28</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001B28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)</title>
<author>
<name sortKey="Venturini, G" sort="Venturini, G" uniqKey="Venturini G" first="G" last="Venturini">G. Venturini</name>
<affiliation>
<mods:affiliation>Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, associé au CNRS (UMR 7555), B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: venturini@lcsm.u-nancy.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Alloys and Compounds</title>
<title level="j" type="abbrev">JALCOM</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">313</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="26">26</biblScope>
<biblScope unit="page" to="33">33</biblScope>
</imprint>
<idno type="ISSN">0925-8388</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloy</term>
<term>Alloys comp</term>
<term>Anisotropy</term>
<term>Anisotropy effects</term>
<term>Antiferromagnetic</term>
<term>Antiferromagnetic character</term>
<term>Brabers</term>
<term>Buschow</term>
<term>Comp</term>
<term>Compound</term>
<term>Compound displays</term>
<term>Compounds display</term>
<term>Cone structure</term>
<term>Content compounds display</term>
<term>Eld</term>
<term>Ferrimagnetic</term>
<term>Ferrimagnetic structures</term>
<term>High temperature</term>
<term>Hysteresis</term>
<term>Isotherm</term>
<term>Isotherm curves</term>
<term>Lower temperature</term>
<term>Magn</term>
<term>Magnetic properties</term>
<term>Magnetization</term>
<term>Magnetization loops</term>
<term>Magnetization measurements</term>
<term>Magnetocrystalline</term>
<term>Magnetocrystalline anisotropy</term>
<term>Malaman</term>
<term>Maximum magnetization values</term>
<term>Neel point</term>
<term>Room temperature</term>
<term>Small amounts</term>
<term>Solid solution</term>
<term>Solid solutions</term>
<term>Spontaneous magnetization</term>
<term>Sublattice</term>
<term>Tbmn</term>
<term>Temperature range</term>
<term>Tmmn</term>
<term>Venturini</term>
<term>Venturini journal</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alloy</term>
<term>Alloys comp</term>
<term>Anisotropy</term>
<term>Anisotropy effects</term>
<term>Antiferromagnetic</term>
<term>Antiferromagnetic character</term>
<term>Brabers</term>
<term>Buschow</term>
<term>Comp</term>
<term>Compound</term>
<term>Compound displays</term>
<term>Compounds display</term>
<term>Cone structure</term>
<term>Content compounds display</term>
<term>Eld</term>
<term>Ferrimagnetic</term>
<term>Ferrimagnetic structures</term>
<term>High temperature</term>
<term>Hysteresis</term>
<term>Isotherm</term>
<term>Isotherm curves</term>
<term>Lower temperature</term>
<term>Magn</term>
<term>Magnetic properties</term>
<term>Magnetization</term>
<term>Magnetization loops</term>
<term>Magnetization measurements</term>
<term>Magnetocrystalline</term>
<term>Magnetocrystalline anisotropy</term>
<term>Malaman</term>
<term>Maximum magnetization values</term>
<term>Neel point</term>
<term>Room temperature</term>
<term>Small amounts</term>
<term>Solid solution</term>
<term>Solid solutions</term>
<term>Spontaneous magnetization</term>
<term>Sublattice</term>
<term>Tbmn</term>
<term>Temperature range</term>
<term>Tmmn</term>
<term>Venturini</term>
<term>Venturini journal</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The TbMn6Ge6−xGax (0.05≤x≤0.60) and TmMn6Ge6−xGax (0.2≤x≤1.0) compounds have been studied by magnetization measurements in the temperature range 10–600 K. The TbMn6Ge6−xGax compounds order ferrimagnetically above room temperature (452≥Tc≥438 K). The low Ga content compounds (x≤0.2) display a ferri- to antiferromagnetic transition on cooling (363≥Tt≥181 K) and a second Curie point at lower temperature (49≤Tc′≤108 K). The high Ga content compounds display ferrimagnetic ordering in their whole ordered range and a spin reorientation transition at low temperature (112≤TSF≤162 K). The TmMn6Ge6−xGax compounds (x≤0.8) order antiferromagnetically above the room temperature (476≥TN≥372 K) and except TmMn6Ge5.8Ga0.2, display a ferrimagnetic ordering at lower temperature (32≤Tc≤250 K). TmMn6Ge5Ga1 is ferrimagnetic in its whole ordered range. The Ga-rich compounds (x≥0.6) display a spin reorientation process around 50 K. All the ferrimagnetic compounds display large anisotropy effects at low temperature. The coercive fields measured for TbMn6Ge5.4Ga0.6 and TmMn6Ge5Ga1 are greater than 25 and 20 kOe, respectively. The evolutions of the magnetic properties and magnetocrystalline anisotropy are discussed.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>tmmn</json:string>
<json:string>magnetization</json:string>
<json:string>tbmn</json:string>
<json:string>ferrimagnetic</json:string>
<json:string>eld</json:string>
<json:string>venturini</json:string>
<json:string>alloys comp</json:string>
<json:string>magn</json:string>
<json:string>comp</json:string>
<json:string>antiferromagnetic</json:string>
<json:string>buschow</json:string>
<json:string>magnetocrystalline</json:string>
<json:string>brabers</json:string>
<json:string>anisotropy</json:string>
<json:string>sublattice</json:string>
<json:string>hysteresis</json:string>
<json:string>isotherm</json:string>
<json:string>magnetocrystalline anisotropy</json:string>
<json:string>magnetic properties</json:string>
<json:string>malaman</json:string>
<json:string>venturini journal</json:string>
<json:string>room temperature</json:string>
<json:string>temperature range</json:string>
<json:string>solid solution</json:string>
<json:string>spontaneous magnetization</json:string>
<json:string>isotherm curves</json:string>
<json:string>lower temperature</json:string>
<json:string>high temperature</json:string>
<json:string>anisotropy effects</json:string>
<json:string>compounds display</json:string>
<json:string>solid solutions</json:string>
<json:string>ferrimagnetic structures</json:string>
<json:string>maximum magnetization values</json:string>
<json:string>neel point</json:string>
<json:string>compound</json:string>
<json:string>alloy</json:string>
<json:string>compound displays</json:string>
<json:string>magnetization loops</json:string>
<json:string>antiferromagnetic character</json:string>
<json:string>small amounts</json:string>
<json:string>cone structure</json:string>
<json:string>content compounds display</json:string>
<json:string>magnetization measurements</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>G Venturini</name>
<affiliations>
<json:string>Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, associé au CNRS (UMR 7555), B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France</json:string>
<json:string>E-mail: venturini@lcsm.u-nancy.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Rare earth compounds</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Transition metal compounds</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Magnetically ordered materials</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Magnetocrystalline anisotropy</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The TbMn6Ge6−xGax (0.05≤x≤0.60) and TmMn6Ge6−xGax (0.2≤x≤1.0) compounds have been studied by magnetization measurements in the temperature range 10–600 K. The TbMn6Ge6−xGax compounds order ferrimagnetically above room temperature (452≥Tc≥438 K). The low Ga content compounds (x≤0.2) display a ferri- to antiferromagnetic transition on cooling (363≥Tt≥181 K) and a second Curie point at lower temperature (49≤Tc′≤108 K). The high Ga content compounds display ferrimagnetic ordering in their whole ordered range and a spin reorientation transition at low temperature (112≤TSF≤162 K). The TmMn6Ge6−xGax compounds (x≤0.8) order antiferromagnetically above the room temperature (476≥TN≥372 K) and except TmMn6Ge5.8Ga0.2, display a ferrimagnetic ordering at lower temperature (32≤Tc≤250 K). TmMn6Ge5Ga1 is ferrimagnetic in its whole ordered range. The Ga-rich compounds (x≥0.6) display a spin reorientation process around 50 K. All the ferrimagnetic compounds display large anisotropy effects at low temperature. The coercive fields measured for TbMn6Ge5.4Ga0.6 and TmMn6Ge5Ga1 are greater than 25 and 20 kOe, respectively. The evolutions of the magnetic properties and magnetocrystalline anisotropy are discussed.</abstract>
<qualityIndicators>
<score>6.107</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>598 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1208</abstractCharCount>
<pdfWordCount>4187</pdfWordCount>
<pdfCharCount>23230</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>160</abstractWordCount>
</qualityIndicators>
<title>Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)</title>
<pii>
<json:string>S0925-8388(00)01197-X</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Alloys and Compounds</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0925-8388</json:string>
</issn>
<pii>
<json:string>S0925-8388(00)X0099-0</json:string>
</pii>
<volume>313</volume>
<issue>1–2</issue>
<pages>
<first>26</first>
<last>33</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>metallurgy & metallurgical engineering</json:string>
<json:string>materials science, multidisciplinary</json:string>
<json:string>chemistry, physical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>materials</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>physique</json:string>
<json:string>etat condense: structure electronique, proprietes electriques, magnetiques et optiques</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0925-8388(00)01197-X</json:string>
</doi>
<id>7A36C677274994FF23913E89D12DB74E24CB6071</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7A36C677274994FF23913E89D12DB74E24CB6071/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7A36C677274994FF23913E89D12DB74E24CB6071/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7A36C677274994FF23913E89D12DB74E24CB6071/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science B.V.</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Temperature dependence of the magnetization of TbMn6Ge6−xGax compounds (0.05≤x≤0.60) in an applied field of 0.1 T.</note>
<note type="content">Fig. 2: Magnetization vs. applied field for the TbMn6Ge5.85Ga0.15 compound at 70, 120 and 290 K.</note>
<note type="content">Fig. 3: Magnetization vs. applied field for the TbMn6Ge5.95Ga0.05 compound measured in the metamagnetic temperature range.</note>
<note type="content">Fig. 4: Variation of the threshold fields of TbMn6Ge6−xGax compounds (0.05≤x≤0.20) as a function of temperature and Ga contents.</note>
<note type="content">Fig. 5: Magnetization loop vs. applied field for the TbMn6Ge5.6Ga0.4 compound at 100 and 150 K.</note>
<note type="content">Fig. 6: Magnetization loops of the TbMn6Ge5.4Ga0.6 and TmMn6Ge5Ga1 compounds measured at 4.2 K.</note>
<note type="content">Fig. 7: Temperature dependence of the magnetization of TmMn6Ge6−xGax compounds (0.2≤x≤1.0) in an applied field of 0.2 T (x≤0.4) and 0.05 T (x≥0.6). Insert shows the high temperature curves for x≤0.6.</note>
<note type="content">Fig. 8: Magnetization vs. applied field for the TmMn6Ge6−xGax compounds (0.2≤x≤1.0) at 300 K.</note>
<note type="content">Fig. 9: Magnetization vs. applied field for the TmMn6Ge6−xGax compounds (0.2≤x≤1.0) at 10 K.</note>
<note type="content">Fig. 10: Magnetization loops of the TmMn6Ge5.2Ga0.8 measured at 50, 72 and 110 K.</note>
<note type="content">Fig. 11: Variation of the transition temperatures of the TbMn6Ge6−xGax compounds as function of the Ga content.</note>
<note type="content">Fig. 12: Projection along [110] of the RMn6X6 structure showing the main Mn–Mn, R–Mn and R–R interactions.</note>
<note type="content">Table 1: Crystallographic and magnetic data of TbMn6Ge6−xGax compounds (0.05≤x≤0.60)</note>
<note type="content">Table 2: Crystallographic and magnetic data of TmMn6Ge6−xGax compounds (0.2≤x≤1.0)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)</title>
<author xml:id="author-0000">
<persName>
<forename type="first">G</forename>
<surname>Venturini</surname>
</persName>
<email>venturini@lcsm.u-nancy.fr</email>
<affiliation>Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, associé au CNRS (UMR 7555), B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France</affiliation>
</author>
<idno type="istex">7A36C677274994FF23913E89D12DB74E24CB6071</idno>
<idno type="DOI">10.1016/S0925-8388(00)01197-X</idno>
<idno type="PII">S0925-8388(00)01197-X</idno>
</analytic>
<monogr>
<title level="j">Journal of Alloys and Compounds</title>
<title level="j" type="abbrev">JALCOM</title>
<idno type="pISSN">0925-8388</idno>
<idno type="PII">S0925-8388(00)X0099-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">313</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="26">26</biblScope>
<biblScope unit="page" to="33">33</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The TbMn6Ge6−xGax (0.05≤x≤0.60) and TmMn6Ge6−xGax (0.2≤x≤1.0) compounds have been studied by magnetization measurements in the temperature range 10–600 K. The TbMn6Ge6−xGax compounds order ferrimagnetically above room temperature (452≥Tc≥438 K). The low Ga content compounds (x≤0.2) display a ferri- to antiferromagnetic transition on cooling (363≥Tt≥181 K) and a second Curie point at lower temperature (49≤Tc′≤108 K). The high Ga content compounds display ferrimagnetic ordering in their whole ordered range and a spin reorientation transition at low temperature (112≤TSF≤162 K). The TmMn6Ge6−xGax compounds (x≤0.8) order antiferromagnetically above the room temperature (476≥TN≥372 K) and except TmMn6Ge5.8Ga0.2, display a ferrimagnetic ordering at lower temperature (32≤Tc≤250 K). TmMn6Ge5Ga1 is ferrimagnetic in its whole ordered range. The Ga-rich compounds (x≥0.6) display a spin reorientation process around 50 K. All the ferrimagnetic compounds display large anisotropy effects at low temperature. The coercive fields measured for TbMn6Ge5.4Ga0.6 and TmMn6Ge5Ga1 are greater than 25 and 20 kOe, respectively. The evolutions of the magnetic properties and magnetocrystalline anisotropy are discussed.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Rare earth compounds</term>
</item>
<item>
<term>Transition metal compounds</term>
</item>
<item>
<term>Magnetically ordered materials</term>
</item>
<item>
<term>Magnetocrystalline anisotropy</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7A36C677274994FF23913E89D12DB74E24CB6071/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>JALCOM</jid>
<aid>6171</aid>
<ce:pii>S0925-8388(00)01197-X</ce:pii>
<ce:doi>10.1016/S0925-8388(00)01197-X</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Magnetic study of HfFe
<ce:inf>6</ce:inf>
Ge
<ce:inf>6</ce:inf>
-type solid solutions TbMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>6−
<ce:italic>x</ce:italic>
</ce:inf>
Ga
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
(0.05≤
<ce:italic>x</ce:italic>
≤0.60) and TmMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>6−
<ce:italic>x</ce:italic>
</ce:inf>
Ga
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
(0.2≤
<ce:italic>x</ce:italic>
≤1.0)</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>G</ce:given-name>
<ce:surname>Venturini</ce:surname>
<ce:e-address>venturini@lcsm.u-nancy.fr</ce:e-address>
</ce:author>
<ce:affiliation>
<ce:textfn>Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, associé au CNRS (UMR 7555), B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="24" month="7" year="2000"></ce:date-received>
<ce:date-accepted day="4" month="8" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The TbMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>6−
<ce:italic>x</ce:italic>
</ce:inf>
Ga
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
(0.05≤
<ce:italic>x</ce:italic>
≤0.60) and TmMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>6−
<ce:italic>x</ce:italic>
</ce:inf>
Ga
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
(0.2≤
<ce:italic>x</ce:italic>
≤1.0) compounds have been studied by magnetization measurements in the temperature range 10–600 K. The TbMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>6−
<ce:italic>x</ce:italic>
</ce:inf>
Ga
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
compounds order ferrimagnetically above room temperature (452≥
<ce:italic>T</ce:italic>
<ce:inf>c</ce:inf>
≥438 K). The low Ga content compounds (
<ce:italic>x</ce:italic>
≤0.2) display a ferri- to antiferromagnetic transition on cooling (363≥
<ce:italic>T</ce:italic>
<ce:inf>t</ce:inf>
≥181 K) and a second Curie point at lower temperature (49≤
<ce:italic>T</ce:italic>
<ce:inf>c′</ce:inf>
≤108 K). The high Ga content compounds display ferrimagnetic ordering in their whole ordered range and a spin reorientation transition at low temperature (112≤
<ce:italic>T</ce:italic>
<ce:inf>SF</ce:inf>
≤162 K). The TmMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>6−
<ce:italic>x</ce:italic>
</ce:inf>
Ga
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
compounds (
<ce:italic>x</ce:italic>
≤0.8) order antiferromagnetically above the room temperature (476≥
<ce:italic>T</ce:italic>
<ce:inf>N</ce:inf>
≥372 K) and except TmMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>5.8</ce:inf>
Ga
<ce:inf>0.2</ce:inf>
, display a ferrimagnetic ordering at lower temperature (32≤
<ce:italic>T</ce:italic>
<ce:inf>c</ce:inf>
≤250 K). TmMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>5</ce:inf>
Ga
<ce:inf>1</ce:inf>
is ferrimagnetic in its whole ordered range. The Ga-rich compounds (
<ce:italic>x</ce:italic>
≥0.6) display a spin reorientation process around 50 K. All the ferrimagnetic compounds display large anisotropy effects at low temperature. The coercive fields measured for TbMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>5.4</ce:inf>
Ga
<ce:inf>0.6</ce:inf>
and TmMn
<ce:inf>6</ce:inf>
Ge
<ce:inf>5</ce:inf>
Ga
<ce:inf>1</ce:inf>
are greater than 25 and 20 kOe, respectively. The evolutions of the magnetic properties and magnetocrystalline anisotropy are discussed.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Rare earth compounds</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Transition metal compounds</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Magnetically ordered materials</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Magnetocrystalline anisotropy</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Magnetic study of HfFe</title>
</titleInfo>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Venturini</namePart>
<affiliation>Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, associé au CNRS (UMR 7555), B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France</affiliation>
<affiliation>E-mail: venturini@lcsm.u-nancy.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The TbMn6Ge6−xGax (0.05≤x≤0.60) and TmMn6Ge6−xGax (0.2≤x≤1.0) compounds have been studied by magnetization measurements in the temperature range 10–600 K. The TbMn6Ge6−xGax compounds order ferrimagnetically above room temperature (452≥Tc≥438 K). The low Ga content compounds (x≤0.2) display a ferri- to antiferromagnetic transition on cooling (363≥Tt≥181 K) and a second Curie point at lower temperature (49≤Tc′≤108 K). The high Ga content compounds display ferrimagnetic ordering in their whole ordered range and a spin reorientation transition at low temperature (112≤TSF≤162 K). The TmMn6Ge6−xGax compounds (x≤0.8) order antiferromagnetically above the room temperature (476≥TN≥372 K) and except TmMn6Ge5.8Ga0.2, display a ferrimagnetic ordering at lower temperature (32≤Tc≤250 K). TmMn6Ge5Ga1 is ferrimagnetic in its whole ordered range. The Ga-rich compounds (x≥0.6) display a spin reorientation process around 50 K. All the ferrimagnetic compounds display large anisotropy effects at low temperature. The coercive fields measured for TbMn6Ge5.4Ga0.6 and TmMn6Ge5Ga1 are greater than 25 and 20 kOe, respectively. The evolutions of the magnetic properties and magnetocrystalline anisotropy are discussed.</abstract>
<note type="content">Fig. 1: Temperature dependence of the magnetization of TbMn6Ge6−xGax compounds (0.05≤x≤0.60) in an applied field of 0.1 T.</note>
<note type="content">Fig. 2: Magnetization vs. applied field for the TbMn6Ge5.85Ga0.15 compound at 70, 120 and 290 K.</note>
<note type="content">Fig. 3: Magnetization vs. applied field for the TbMn6Ge5.95Ga0.05 compound measured in the metamagnetic temperature range.</note>
<note type="content">Fig. 4: Variation of the threshold fields of TbMn6Ge6−xGax compounds (0.05≤x≤0.20) as a function of temperature and Ga contents.</note>
<note type="content">Fig. 5: Magnetization loop vs. applied field for the TbMn6Ge5.6Ga0.4 compound at 100 and 150 K.</note>
<note type="content">Fig. 6: Magnetization loops of the TbMn6Ge5.4Ga0.6 and TmMn6Ge5Ga1 compounds measured at 4.2 K.</note>
<note type="content">Fig. 7: Temperature dependence of the magnetization of TmMn6Ge6−xGax compounds (0.2≤x≤1.0) in an applied field of 0.2 T (x≤0.4) and 0.05 T (x≥0.6). Insert shows the high temperature curves for x≤0.6.</note>
<note type="content">Fig. 8: Magnetization vs. applied field for the TmMn6Ge6−xGax compounds (0.2≤x≤1.0) at 300 K.</note>
<note type="content">Fig. 9: Magnetization vs. applied field for the TmMn6Ge6−xGax compounds (0.2≤x≤1.0) at 10 K.</note>
<note type="content">Fig. 10: Magnetization loops of the TmMn6Ge5.2Ga0.8 measured at 50, 72 and 110 K.</note>
<note type="content">Fig. 11: Variation of the transition temperatures of the TbMn6Ge6−xGax compounds as function of the Ga content.</note>
<note type="content">Fig. 12: Projection along [110] of the RMn6X6 structure showing the main Mn–Mn, R–Mn and R–R interactions.</note>
<note type="content">Table 1: Crystallographic and magnetic data of TbMn6Ge6−xGax compounds (0.05≤x≤0.60)</note>
<note type="content">Table 2: Crystallographic and magnetic data of TmMn6Ge6−xGax compounds (0.2≤x≤1.0)</note>
<subject>
<genre>Keywords</genre>
<topic>Rare earth compounds</topic>
<topic>Transition metal compounds</topic>
<topic>Magnetically ordered materials</topic>
<topic>Magnetocrystalline anisotropy</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Alloys and Compounds</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>JALCOM</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20001215</dateIssued>
</originInfo>
<identifier type="ISSN">0925-8388</identifier>
<identifier type="PII">S0925-8388(00)X0099-0</identifier>
<part>
<date>20001215</date>
<detail type="volume">
<number>313</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>L1</start>
<end>L22</end>
</extent>
<extent unit="issue-pages">
<start>1</start>
<end>282</end>
</extent>
<extent unit="pages">
<start>26</start>
<end>33</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">7A36C677274994FF23913E89D12DB74E24CB6071</identifier>
<identifier type="ark">ark:/67375/6H6-MPZWDJ6G-9</identifier>
<identifier type="DOI">10.1016/S0925-8388(00)01197-X</identifier>
<identifier type="PII">S0925-8388(00)01197-X</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/7A36C677274994FF23913E89D12DB74E24CB6071/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001B28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7A36C677274994FF23913E89D12DB74E24CB6071
   |texte=   Magnetic study of HfFe6Ge6-type solid solutions TbMn6Ge6− x Ga x (0.05≤ x ≤0.60) and TmMn6Ge6− x Ga x (0.2≤ x ≤1.0)
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024