Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure

Identifieur interne : 001A56 ( Istex/Corpus ); précédent : 001A55; suivant : 001A57

Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure

Auteurs : D. Fort

Source :

RBID : ISTEX:76DCC46B061449136564FD892728C5AB6DD593B9

English descriptors

Abstract

Abstract: The results of 34 solid-state recrystallization crystal growth attempts on rare earth metal elements and rare earth-rare earth alloys which adopt the hexagonal close-packed crystal structure are presented. Following a procedure which involved annealing ingots which had been strained by fast cooling from the melt, a heat treatment recipe of annealing for at least 40–60 h at a temperature equivalent to 85% of the absolute melting temperature or 95% of any h.c.p.-b.c.c. transformation temperature, whichever was the lower, was deduced to lead to the most extensive grain growth. The potential advantages of solid-state crystal growth over melt growth for these materials were found to be experimental simplicity, the preparation of crystals with improved crystal quality and lower volatilization losses for higher vapour pressure materials.

Url:
DOI: 10.1016/0925-8388(91)90054-Y

Links to Exploration step

ISTEX:76DCC46B061449136564FD892728C5AB6DD593B9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</title>
<author>
<name sortKey="Fort, D" sort="Fort, D" uniqKey="Fort D" first="D." last="Fort">D. Fort</name>
<affiliation>
<mods:affiliation>School of Metallurgy and Materials, University of Birmingham, P.O. Box 363, Birmingham B15 2TT U.K.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:76DCC46B061449136564FD892728C5AB6DD593B9</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1016/0925-8388(91)90054-Y</idno>
<idno type="url">https://api.istex.fr/document/76DCC46B061449136564FD892728C5AB6DD593B9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A56</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</title>
<author>
<name sortKey="Fort, D" sort="Fort, D" uniqKey="Fort D" first="D." last="Fort">D. Fort</name>
<affiliation>
<mods:affiliation>School of Metallurgy and Materials, University of Birmingham, P.O. Box 363, Birmingham B15 2TT U.K.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Alloys and Compounds</title>
<title level="j" type="abbrev">JALCOM</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991">1991</date>
<biblScope unit="volume">177</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="31">31</biblScope>
<biblScope unit="page" to="47">47</biblScope>
</imprint>
<idno type="ISSN">0925-8388</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloy</term>
<term>Ames metals</term>
<term>Annealing</term>
<term>Annealing conditions</term>
<term>Annealing samples</term>
<term>Annealing technique</term>
<term>Annealing techniques</term>
<term>Annealing temperature</term>
<term>Annealing temperatures</term>
<term>Annealing time</term>
<term>Annealing times</term>
<term>Average annealing time</term>
<term>Best results</term>
<term>Cold boat</term>
<term>Crystal growth</term>
<term>Crystal growth attempts</term>
<term>Different sizes</term>
<term>Earth alloys</term>
<term>Emissivity</term>
<term>Emissivity value</term>
<term>Emissivity values</term>
<term>Erbium</term>
<term>Experimental simplicity</term>
<term>Experimental variables</term>
<term>Good results</term>
<term>Grain growth</term>
<term>Grain size</term>
<term>Grain sizes</term>
<term>High temperature</term>
<term>High vapour pressure</term>
<term>Higher vapour pressure materials</term>
<term>Induction heating</term>
<term>Ingot</term>
<term>Iowa state university</term>
<term>Large grains</term>
<term>Large number</term>
<term>Larger samples</term>
<term>Largest grain</term>
<term>Polymorphic transformation</term>
<term>Potential advantages</term>
<term>Radiofrequency coil</term>
<term>Rare earth metals</term>
<term>Rare earth products</term>
<term>Rare earths</term>
<term>Recrystallization</term>
<term>Recrystallization crystal growths</term>
<term>Resistance furnace</term>
<term>Results section</term>
<term>Rhombohedral metals</term>
<term>Sample shape</term>
<term>Sample volume</term>
<term>Sealing samples</term>
<term>Secondary recrystallization</term>
<term>Solidstate crystal growth</term>
<term>Strain annealing</term>
<term>Strain energy</term>
<term>Strain gradient</term>
<term>Strain levels</term>
<term>Tantalum</term>
<term>Temperature gradient</term>
<term>Temperature measurement</term>
<term>Transformation temperature</term>
<term>Vacuum tube</term>
<term>Vapour</term>
<term>Volatilization</term>
<term>Volatilization losses</term>
<term>Weight losses</term>
<term>Yttrium</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alloy</term>
<term>Ames metals</term>
<term>Annealing</term>
<term>Annealing conditions</term>
<term>Annealing samples</term>
<term>Annealing technique</term>
<term>Annealing techniques</term>
<term>Annealing temperature</term>
<term>Annealing temperatures</term>
<term>Annealing time</term>
<term>Annealing times</term>
<term>Average annealing time</term>
<term>Best results</term>
<term>Cold boat</term>
<term>Crystal growth</term>
<term>Crystal growth attempts</term>
<term>Different sizes</term>
<term>Earth alloys</term>
<term>Emissivity</term>
<term>Emissivity value</term>
<term>Emissivity values</term>
<term>Erbium</term>
<term>Experimental simplicity</term>
<term>Experimental variables</term>
<term>Good results</term>
<term>Grain growth</term>
<term>Grain size</term>
<term>Grain sizes</term>
<term>High temperature</term>
<term>High vapour pressure</term>
<term>Higher vapour pressure materials</term>
<term>Induction heating</term>
<term>Ingot</term>
<term>Iowa state university</term>
<term>Large grains</term>
<term>Large number</term>
<term>Larger samples</term>
<term>Largest grain</term>
<term>Polymorphic transformation</term>
<term>Potential advantages</term>
<term>Radiofrequency coil</term>
<term>Rare earth metals</term>
<term>Rare earth products</term>
<term>Rare earths</term>
<term>Recrystallization</term>
<term>Recrystallization crystal growths</term>
<term>Resistance furnace</term>
<term>Results section</term>
<term>Rhombohedral metals</term>
<term>Sample shape</term>
<term>Sample volume</term>
<term>Sealing samples</term>
<term>Secondary recrystallization</term>
<term>Solidstate crystal growth</term>
<term>Strain annealing</term>
<term>Strain energy</term>
<term>Strain gradient</term>
<term>Strain levels</term>
<term>Tantalum</term>
<term>Temperature gradient</term>
<term>Temperature measurement</term>
<term>Transformation temperature</term>
<term>Vacuum tube</term>
<term>Vapour</term>
<term>Volatilization</term>
<term>Volatilization losses</term>
<term>Weight losses</term>
<term>Yttrium</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The results of 34 solid-state recrystallization crystal growth attempts on rare earth metal elements and rare earth-rare earth alloys which adopt the hexagonal close-packed crystal structure are presented. Following a procedure which involved annealing ingots which had been strained by fast cooling from the melt, a heat treatment recipe of annealing for at least 40–60 h at a temperature equivalent to 85% of the absolute melting temperature or 95% of any h.c.p.-b.c.c. transformation temperature, whichever was the lower, was deduced to lead to the most extensive grain growth. The potential advantages of solid-state crystal growth over melt growth for these materials were found to be experimental simplicity, the preparation of crystals with improved crystal quality and lower volatilization losses for higher vapour pressure materials.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>annealing</json:string>
<json:string>vapour</json:string>
<json:string>cold boat</json:string>
<json:string>recrystallization</json:string>
<json:string>rare earth metals</json:string>
<json:string>ingot</json:string>
<json:string>tantalum</json:string>
<json:string>largest grain</json:string>
<json:string>yttrium</json:string>
<json:string>annealing temperature</json:string>
<json:string>emissivity</json:string>
<json:string>erbium</json:string>
<json:string>crystal growth</json:string>
<json:string>grain growth</json:string>
<json:string>large grains</json:string>
<json:string>annealing temperatures</json:string>
<json:string>volatilization</json:string>
<json:string>rare earths</json:string>
<json:string>annealing technique</json:string>
<json:string>annealing time</json:string>
<json:string>alloy</json:string>
<json:string>radiofrequency coil</json:string>
<json:string>high vapour pressure</json:string>
<json:string>sample shape</json:string>
<json:string>grain size</json:string>
<json:string>induction heating</json:string>
<json:string>results section</json:string>
<json:string>crystal growth attempts</json:string>
<json:string>sample volume</json:string>
<json:string>temperature gradient</json:string>
<json:string>annealing times</json:string>
<json:string>volatilization losses</json:string>
<json:string>temperature measurement</json:string>
<json:string>ames metals</json:string>
<json:string>large number</json:string>
<json:string>earth alloys</json:string>
<json:string>annealing samples</json:string>
<json:string>iowa state university</json:string>
<json:string>best results</json:string>
<json:string>high temperature</json:string>
<json:string>resistance furnace</json:string>
<json:string>annealing conditions</json:string>
<json:string>vacuum tube</json:string>
<json:string>annealing techniques</json:string>
<json:string>secondary recrystallization</json:string>
<json:string>strain energy</json:string>
<json:string>emissivity values</json:string>
<json:string>strain annealing</json:string>
<json:string>emissivity value</json:string>
<json:string>rare earth products</json:string>
<json:string>polymorphic transformation</json:string>
<json:string>rhombohedral metals</json:string>
<json:string>recrystallization crystal growths</json:string>
<json:string>different sizes</json:string>
<json:string>higher vapour pressure materials</json:string>
<json:string>experimental simplicity</json:string>
<json:string>solidstate crystal growth</json:string>
<json:string>potential advantages</json:string>
<json:string>experimental variables</json:string>
<json:string>good results</json:string>
<json:string>grain sizes</json:string>
<json:string>average annealing time</json:string>
<json:string>transformation temperature</json:string>
<json:string>larger samples</json:string>
<json:string>weight losses</json:string>
<json:string>sealing samples</json:string>
<json:string>strain levels</json:string>
<json:string>strain gradient</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>D. Fort</name>
<affiliations>
<json:string>School of Metallurgy and Materials, University of Birmingham, P.O. Box 363, Birmingham B15 2TT U.K.</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The results of 34 solid-state recrystallization crystal growth attempts on rare earth metal elements and rare earth-rare earth alloys which adopt the hexagonal close-packed crystal structure are presented. Following a procedure which involved annealing ingots which had been strained by fast cooling from the melt, a heat treatment recipe of annealing for at least 40–60 h at a temperature equivalent to 85% of the absolute melting temperature or 95% of any h.c.p.-b.c.c. transformation temperature, whichever was the lower, was deduced to lead to the most extensive grain growth. The potential advantages of solid-state crystal growth over melt growth for these materials were found to be experimental simplicity, the preparation of crystals with improved crystal quality and lower volatilization losses for higher vapour pressure materials.</abstract>
<qualityIndicators>
<score>6.488</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>468 x 699 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>842</abstractCharCount>
<pdfWordCount>8209</pdfWordCount>
<pdfCharCount>37800</pdfCharCount>
<pdfPageCount>17</pdfPageCount>
<abstractWordCount>124</abstractWordCount>
</qualityIndicators>
<title>Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</title>
<pii>
<json:string>0925-8388(91)90054-Y</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>CONF-821120</title>
<language>
<json:string>unknown</json:string>
</language>
<pages>
<first>1</first>
</pages>
</serie>
<host>
<title>Journal of Alloys and Compounds</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1991</publicationDate>
<issn>
<json:string>0925-8388</json:string>
</issn>
<pii>
<json:string>S0925-8388(00)X0140-5</json:string>
</pii>
<volume>177</volume>
<issue>1</issue>
<pages>
<first>31</first>
<last>47</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>metallurgy & metallurgical engineering</json:string>
<json:string>materials science, multidisciplinary</json:string>
<json:string>chemistry, physical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>materials</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>physique</json:string>
<json:string>domaines interdisciplinaires: science des materiaux. rheologie</json:string>
</inist>
</categories>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<doi>
<json:string>10.1016/0925-8388(91)90054-Y</json:string>
</doi>
<id>76DCC46B061449136564FD892728C5AB6DD593B9</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/76DCC46B061449136564FD892728C5AB6DD593B9/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/76DCC46B061449136564FD892728C5AB6DD593B9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/76DCC46B061449136564FD892728C5AB6DD593B9/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1991</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Regular paper</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</title>
<author xml:id="author-0000">
<persName>
<forename type="first">D.</forename>
<surname>Fort</surname>
</persName>
<affiliation>School of Metallurgy and Materials, University of Birmingham, P.O. Box 363, Birmingham B15 2TT U.K.</affiliation>
</author>
<idno type="istex">76DCC46B061449136564FD892728C5AB6DD593B9</idno>
<idno type="DOI">10.1016/0925-8388(91)90054-Y</idno>
<idno type="PII">0925-8388(91)90054-Y</idno>
</analytic>
<monogr>
<title level="j">Journal of Alloys and Compounds</title>
<title level="j" type="abbrev">JALCOM</title>
<idno type="pISSN">0925-8388</idno>
<idno type="PII">S0925-8388(00)X0140-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991"></date>
<biblScope unit="volume">177</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="31">31</biblScope>
<biblScope unit="page" to="47">47</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1991</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The results of 34 solid-state recrystallization crystal growth attempts on rare earth metal elements and rare earth-rare earth alloys which adopt the hexagonal close-packed crystal structure are presented. Following a procedure which involved annealing ingots which had been strained by fast cooling from the melt, a heat treatment recipe of annealing for at least 40–60 h at a temperature equivalent to 85% of the absolute melting temperature or 95% of any h.c.p.-b.c.c. transformation temperature, whichever was the lower, was deduced to lead to the most extensive grain growth. The potential advantages of solid-state crystal growth over melt growth for these materials were found to be experimental simplicity, the preparation of crystals with improved crystal quality and lower volatilization losses for higher vapour pressure materials.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1991-06-25">Modified</change>
<change when="1991">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/76DCC46B061449136564FD892728C5AB6DD593B9/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>JALCOM</jid>
<aid>9190054Y</aid>
<ce:pii>0925-8388(91)90054-Y</ce:pii>
<ce:doi>10.1016/0925-8388(91)90054-Y</ce:doi>
<ce:copyright type="unknown" year="1991"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Regular paper</ce:textfn>
</ce:dochead>
<ce:title>Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>D.</ce:given-name>
<ce:surname>Fort</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>School of Metallurgy and Materials, University of Birmingham, P.O. Box 363, Birmingham B15 2TT U.K.</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="2" month="3" year="1991"></ce:date-received>
<ce:date-revised day="25" month="6" year="1991"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The results of 34 solid-state recrystallization crystal growth attempts on rare earth metal elements and rare earth-rare earth alloys which adopt the hexagonal close-packed crystal structure are presented. Following a procedure which involved annealing ingots which had been strained by fast cooling from the melt, a heat treatment recipe of annealing for at least 40–60 h at a temperature equivalent to 85% of the absolute melting temperature or 95% of any h.c.p.-b.c.c. transformation temperature, whichever was the lower, was deduced to lead to the most extensive grain growth. The potential advantages of solid-state crystal growth over melt growth for these materials were found to be experimental simplicity, the preparation of crystals with improved crystal quality and lower volatilization losses for higher vapour pressure materials.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Fort</namePart>
<affiliation>School of Metallurgy and Materials, University of Birmingham, P.O. Box 363, Birmingham B15 2TT U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1991</dateIssued>
<dateModified encoding="w3cdtf">1991-06-25</dateModified>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The results of 34 solid-state recrystallization crystal growth attempts on rare earth metal elements and rare earth-rare earth alloys which adopt the hexagonal close-packed crystal structure are presented. Following a procedure which involved annealing ingots which had been strained by fast cooling from the melt, a heat treatment recipe of annealing for at least 40–60 h at a temperature equivalent to 85% of the absolute melting temperature or 95% of any h.c.p.-b.c.c. transformation temperature, whichever was the lower, was deduced to lead to the most extensive grain growth. The potential advantages of solid-state crystal growth over melt growth for these materials were found to be experimental simplicity, the preparation of crystals with improved crystal quality and lower volatilization losses for higher vapour pressure materials.</abstract>
<note type="content">Section title: Regular paper</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Alloys and Compounds</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>JALCOM</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19911205</dateIssued>
</originInfo>
<identifier type="ISSN">0925-8388</identifier>
<identifier type="PII">S0925-8388(00)X0140-5</identifier>
<part>
<date>19911205</date>
<detail type="volume">
<number>177</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>L1</start>
<end>L19</end>
</extent>
<extent unit="issue-pages">
<start>1</start>
<end>173</end>
</extent>
<extent unit="pages">
<start>31</start>
<end>47</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">76DCC46B061449136564FD892728C5AB6DD593B9</identifier>
<identifier type="ark">ark:/67375/6H6-CDNBHPB2-1</identifier>
<identifier type="DOI">10.1016/0925-8388(91)90054-Y</identifier>
<identifier type="PII">0925-8388(91)90054-Y</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/76DCC46B061449136564FD892728C5AB6DD593B9/metadata/json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001A56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:76DCC46B061449136564FD892728C5AB6DD593B9
   |texte=   Solid-state crystal growth of rare earth metals and alloys adopting the h.c.p. crystal structure
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024