Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre

Identifieur interne : 000509 ( Istex/Corpus ); précédent : 000508; suivant : 000510

2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre

Auteurs : J. Mojda ; D. Dorosz ; J. Dorosz

Source :

RBID : ISTEX:17A1674AD5A28AEB6513865340F8CF0B53960561

English descriptors

Abstract

Tm3+/Ho3+ - doped antimony-silicate optical fibre with 2.1 μm emission has been presented. Luminescence corresponding to 5I7 → 5I8 transition in holmium was obtained by energy transfer between Tm3+ and Ho3+ ions. The analysis of the luminescence mechanism showed a significant influence of the glass composition (low phonon content) on the emission intensity. Optimization of the active elements content, presented in the paper, allowed to indicate that a strong emission intensity at 2 μm in the fabricated glasses was obtained for the molar composition of 1% Tm2O3 : 0.75% Ho2O3. According to the Förster-Dexter theory, the efficiency of energy transfer of the 3F4 (Tm3+) → 5I7 (Ho3+) transition was calculated. Moreover, it was found that the full width at half maximum (FWHM) of luminescence in the range of 1.6 - 2.2 μm strongly depends on the Tm3+/Ho3+ ratio. The optimization of Tm3+/Ho3+ transfer in antimony-silicate glasses allowed to fabricate optical fibre with narrowing and red-shifting of emission at 2.1 μm.

Url:
DOI: 10.2478/v10175-011-0045-7

Links to Exploration step

ISTEX:17A1674AD5A28AEB6513865340F8CF0B53960561

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre</title>
<author>
<name sortKey=" Mojda, J" sort=" Mojda, J" uniqKey=" Mojda J" first="J." last=" Mojda">J. Mojda</name>
<affiliation>
<mods:affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorosz, D" sort="Dorosz, D" uniqKey="Dorosz D" first="D." last="Dorosz">D. Dorosz</name>
<affiliation>
<mods:affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorosz, J" sort="Dorosz, J" uniqKey="Dorosz J" first="J." last="Dorosz">J. Dorosz</name>
<affiliation>
<mods:affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:17A1674AD5A28AEB6513865340F8CF0B53960561</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.2478/v10175-011-0045-7</idno>
<idno type="url">https://api.istex.fr/document/17A1674AD5A28AEB6513865340F8CF0B53960561/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000509</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre</title>
<author>
<name sortKey=" Mojda, J" sort=" Mojda, J" uniqKey=" Mojda J" first="J." last=" Mojda">J. Mojda</name>
<affiliation>
<mods:affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorosz, D" sort="Dorosz, D" uniqKey="Dorosz D" first="D." last="Dorosz">D. Dorosz</name>
<affiliation>
<mods:affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dorosz, J" sort="Dorosz, J" uniqKey="Dorosz J" first="J." last="Dorosz">J. Dorosz</name>
<affiliation>
<mods:affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Bulletin of the Polish Academy of Sciences: Technical Sciences</title>
<idno type="ISSN">0239-7528</idno>
<imprint>
<publisher>Versita</publisher>
<date type="published" when="2011-12-01">2011-12-01</date>
<biblScope unit="volume">59</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="381">381</biblScope>
<biblScope unit="page" to="387">387</biblScope>
</imprint>
<idno type="ISSN">0239-7528</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0239-7528</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption band</term>
<term>Absorption bands</term>
<term>Absorption curve</term>
<term>Absorption spectra</term>
<term>Acceptor</term>
<term>Acceptor ions</term>
<term>Active ions</term>
<term>Antimony glasses</term>
<term>Average distance</term>
<term>Bond energy</term>
<term>Doped</term>
<term>Doped glasses</term>
<term>Dorosz</term>
<term>Emission intensity</term>
<term>Emission transitions</term>
<term>Energetic levels</term>
<term>Energy migration</term>
<term>Energy transfer</term>
<term>Full width</term>
<term>Glass composition</term>
<term>Ground state</term>
<term>High values</term>
<term>Holmium</term>
<term>Holmium ions</term>
<term>Infrared emission</term>
<term>Ion</term>
<term>Laser</term>
<term>Laser diode</term>
<term>Light refraction</term>
<term>Luminescence</term>
<term>Luminescence intensity</term>
<term>Luminescence line</term>
<term>Luminescence mechanism</term>
<term>Luminescence spectra</term>
<term>Luminescence spectrum</term>
<term>Matrix</term>
<term>Molar composition</term>
<term>Molar concentration</term>
<term>Optica applicata</term>
<term>Phonon energy</term>
<term>Phys</term>
<term>Quantum transition</term>
<term>Rare earth elements</term>
<term>Rare earth ions</term>
<term>Rare earths</term>
<term>Relaxation process</term>
<term>Resonance energy transfer</term>
<term>Silicate glasses</term>
<term>Spectral transmission</term>
<term>Spectroscopic properties</term>
<term>Strong absorption</term>
<term>Strong glasses</term>
<term>Strong luminescence</term>
<term>Strong luminescence line</term>
<term>Tellurite</term>
<term>Tellurite glasses</term>
<term>Thulium</term>
<term>Thulium ions</term>
<term>Tm3+/Ho3+ glasses</term>
<term>Transformation temperature</term>
<term>Transmission spectra</term>
<term>Wavelength</term>
<term>Wide range</term>
<term>active optical fibre</term>
<term>antimony-silicate glasses</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorption band</term>
<term>Absorption bands</term>
<term>Absorption curve</term>
<term>Absorption spectra</term>
<term>Acceptor</term>
<term>Acceptor ions</term>
<term>Active ions</term>
<term>Antimony glasses</term>
<term>Average distance</term>
<term>Bond energy</term>
<term>Doped</term>
<term>Doped glasses</term>
<term>Dorosz</term>
<term>Emission intensity</term>
<term>Emission transitions</term>
<term>Energetic levels</term>
<term>Energy migration</term>
<term>Energy transfer</term>
<term>Full width</term>
<term>Glass composition</term>
<term>Ground state</term>
<term>High values</term>
<term>Holmium</term>
<term>Holmium ions</term>
<term>Infrared emission</term>
<term>Ion</term>
<term>Laser</term>
<term>Laser diode</term>
<term>Light refraction</term>
<term>Luminescence</term>
<term>Luminescence intensity</term>
<term>Luminescence line</term>
<term>Luminescence mechanism</term>
<term>Luminescence spectra</term>
<term>Luminescence spectrum</term>
<term>Matrix</term>
<term>Molar composition</term>
<term>Molar concentration</term>
<term>Optica applicata</term>
<term>Phonon energy</term>
<term>Phys</term>
<term>Quantum transition</term>
<term>Rare earth elements</term>
<term>Rare earth ions</term>
<term>Rare earths</term>
<term>Relaxation process</term>
<term>Resonance energy transfer</term>
<term>Silicate glasses</term>
<term>Spectral transmission</term>
<term>Spectroscopic properties</term>
<term>Strong absorption</term>
<term>Strong glasses</term>
<term>Strong luminescence</term>
<term>Strong luminescence line</term>
<term>Tellurite</term>
<term>Tellurite glasses</term>
<term>Thulium</term>
<term>Thulium ions</term>
<term>Transformation temperature</term>
<term>Transmission spectra</term>
<term>Wavelength</term>
<term>Wide range</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tm3+/Ho3+ - doped antimony-silicate optical fibre with 2.1 μm emission has been presented. Luminescence corresponding to 5I7 → 5I8 transition in holmium was obtained by energy transfer between Tm3+ and Ho3+ ions. The analysis of the luminescence mechanism showed a significant influence of the glass composition (low phonon content) on the emission intensity. Optimization of the active elements content, presented in the paper, allowed to indicate that a strong emission intensity at 2 μm in the fabricated glasses was obtained for the molar composition of 1% Tm2O3 : 0.75% Ho2O3. According to the Förster-Dexter theory, the efficiency of energy transfer of the 3F4 (Tm3+) → 5I7 (Ho3+) transition was calculated. Moreover, it was found that the full width at half maximum (FWHM) of luminescence in the range of 1.6 - 2.2 μm strongly depends on the Tm3+/Ho3+ ratio. The optimization of Tm3+/Ho3+ transfer in antimony-silicate glasses allowed to fabricate optical fibre with narrowing and red-shifting of emission at 2.1 μm.</div>
</front>
</TEI>
<istex>
<corpusName>degruyter-journals</corpusName>
<keywords>
<teeft>
<json:string>energy transfer</json:string>
<json:string>laser</json:string>
<json:string>holmium</json:string>
<json:string>thulium</json:string>
<json:string>luminescence</json:string>
<json:string>holmium ions</json:string>
<json:string>dorosz</json:string>
<json:string>doped</json:string>
<json:string>phys</json:string>
<json:string>thulium ions</json:string>
<json:string>acceptor</json:string>
<json:string>tellurite</json:string>
<json:string>ion</json:string>
<json:string>full width</json:string>
<json:string>resonance energy transfer</json:string>
<json:string>doped glasses</json:string>
<json:string>luminescence spectrum</json:string>
<json:string>matrix</json:string>
<json:string>absorption spectra</json:string>
<json:string>tellurite glasses</json:string>
<json:string>light refraction</json:string>
<json:string>antimony glasses</json:string>
<json:string>luminescence spectra</json:string>
<json:string>emission intensity</json:string>
<json:string>spectroscopic properties</json:string>
<json:string>phonon energy</json:string>
<json:string>wavelength</json:string>
<json:string>bond energy</json:string>
<json:string>strong glasses</json:string>
<json:string>wide range</json:string>
<json:string>transmission spectra</json:string>
<json:string>rare earth ions</json:string>
<json:string>silicate glasses</json:string>
<json:string>rare earth elements</json:string>
<json:string>rare earths</json:string>
<json:string>active ions</json:string>
<json:string>quantum transition</json:string>
<json:string>average distance</json:string>
<json:string>ground state</json:string>
<json:string>absorption band</json:string>
<json:string>spectral transmission</json:string>
<json:string>strong absorption</json:string>
<json:string>transformation temperature</json:string>
<json:string>laser diode</json:string>
<json:string>molar composition</json:string>
<json:string>energetic levels</json:string>
<json:string>absorption curve</json:string>
<json:string>molar concentration</json:string>
<json:string>strong luminescence line</json:string>
<json:string>glass composition</json:string>
<json:string>emission transitions</json:string>
<json:string>luminescence line</json:string>
<json:string>acceptor ions</json:string>
<json:string>relaxation process</json:string>
<json:string>energy migration</json:string>
<json:string>luminescence intensity</json:string>
<json:string>high values</json:string>
<json:string>strong luminescence</json:string>
<json:string>luminescence mechanism</json:string>
<json:string>infrared emission</json:string>
<json:string>optica applicata</json:string>
<json:string>absorption bands</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>J. Żmojda</name>
<affiliations>
<json:string>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Dorosz</name>
<affiliations>
<json:string>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Dorosz</name>
<affiliations>
<json:string>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>antimony-silicate glasses</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Tm3+/Ho3+ glasses</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>active optical fibre</value>
</json:item>
</subject>
<articleId>
<json:string>v10175-011-0045-7</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Tm3+/Ho3+ - doped antimony-silicate optical fibre with 2.1 μm emission has been presented. Luminescence corresponding to 5I7 → 5I8 transition in holmium was obtained by energy transfer between Tm3+ and Ho3+ ions. The analysis of the luminescence mechanism showed a significant influence of the glass composition (low phonon content) on the emission intensity. Optimization of the active elements content, presented in the paper, allowed to indicate that a strong emission intensity at 2 μm in the fabricated glasses was obtained for the molar composition of 1% Tm2O3 : 0.75% Ho2O3. According to the Förster-Dexter theory, the efficiency of energy transfer of the 3F4 (Tm3+) → 5I7 (Ho3+) transition was calculated. Moreover, it was found that the full width at half maximum (FWHM) of luminescence in the range of 1.6 - 2.2 μm strongly depends on the Tm3+/Ho3+ ratio. The optimization of Tm3+/Ho3+ transfer in antimony-silicate glasses allowed to fabricate optical fibre with narrowing and red-shifting of emission at 2.1 μm.</abstract>
<qualityIndicators>
<score>8.09</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>594.96 x 842.04 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>1023</abstractCharCount>
<pdfWordCount>4170</pdfWordCount>
<pdfCharCount>23430</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>160</abstractWordCount>
</qualityIndicators>
<title>2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Bulletin of the Polish Academy of Sciences: Technical Sciences</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0239-7528</json:string>
</issn>
<publisherId>
<json:string>BPASTS</json:string>
</publisherId>
<volume>59</volume>
<issue>4</issue>
<pages>
<first>381</first>
<last>387</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>general</json:string>
<json:string>general science & technology</json:string>
<json:string>general science & technology</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>physique</json:string>
<json:string>etat condense: structure electronique, proprietes electriques, magnetiques et optiques</json:string>
</inist>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.2478/v10175-011-0045-7</json:string>
</doi>
<id>17A1674AD5A28AEB6513865340F8CF0B53960561</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/17A1674AD5A28AEB6513865340F8CF0B53960561/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/17A1674AD5A28AEB6513865340F8CF0B53960561/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/17A1674AD5A28AEB6513865340F8CF0B53960561/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Versita</publisher>
<availability status="free">
<p>Open Access</p>
</availability>
<date>2012-02-29</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre</title>
<author xml:id="author-0000">
<persName>
<forename type="first">J.</forename>
<surname>Żmojda</surname>
</persName>
<affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">D.</forename>
<surname>Dorosz</surname>
</persName>
<affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">J.</forename>
<surname>Dorosz</surname>
</persName>
<affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</affiliation>
</author>
<idno type="istex">17A1674AD5A28AEB6513865340F8CF0B53960561</idno>
<idno type="ark">ark:/67375/QT4-DNWHH58P-7</idno>
<idno type="DOI">10.2478/v10175-011-0045-7</idno>
<idno type="article-id">v10175-011-0045-7</idno>
<idno type="pdf">v10175-011-0045-7.pdf</idno>
</analytic>
<monogr>
<title level="j">Bulletin of the Polish Academy of Sciences: Technical Sciences</title>
<idno type="pISSN">0239-7528</idno>
<idno type="publisher-id">BPASTS</idno>
<imprint>
<publisher>Versita</publisher>
<date type="published" when="2011-12-01"></date>
<biblScope unit="volume">59</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="381">381</biblScope>
<biblScope unit="page" to="387">387</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012-02-29</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Tm3+/Ho3+ - doped antimony-silicate optical fibre with 2.1 μm emission has been presented. Luminescence corresponding to 5I7 → 5I8 transition in holmium was obtained by energy transfer between Tm3+ and Ho3+ ions. The analysis of the luminescence mechanism showed a significant influence of the glass composition (low phonon content) on the emission intensity. Optimization of the active elements content, presented in the paper, allowed to indicate that a strong emission intensity at 2 μm in the fabricated glasses was obtained for the molar composition of 1% Tm2O3 : 0.75% Ho2O3. According to the Förster-Dexter theory, the efficiency of energy transfer of the 3F4 (Tm3+) → 5I7 (Ho3+) transition was calculated. Moreover, it was found that the full width at half maximum (FWHM) of luminescence in the range of 1.6 - 2.2 μm strongly depends on the Tm3+/Ho3+ ratio. The optimization of Tm3+/Ho3+ transfer in antimony-silicate glasses allowed to fabricate optical fibre with narrowing and red-shifting of emission at 2.1 μm.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>antimony-silicate glasses</term>
</item>
<item>
<term>Tm3+/Ho3+ glasses</term>
</item>
<item>
<term>active optical fibre</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-02-29">Created</change>
<change when="2011-12-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/17A1674AD5A28AEB6513865340F8CF0B53960561/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus degruyter-journals" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v3.0 20080202//EN" URI="journalpublishing3.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="3.0" xml:lang="en">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">BPASTS</journal-id>
<journal-title-group>
<abbrev-journal-title abbrev-type="full">Bulletin of the Polish Academy of Sciences: Technical Sciences</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0239-7528</issn>
<publisher>
<publisher-name>Versita</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">v10175-011-0045-7</article-id>
<article-id pub-id-type="doi">10.2478/v10175-011-0045-7</article-id>
<title-group>
<article-title>2.1 μm emission of Tm
<sup>3+</sup>
/Ho
<sup>3+</sup>
- doped antimony-silicate glasses for active optical fibre</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Żmojda</surname>
<given-names>J.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dorosz</surname>
<given-names>D.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dorosz</surname>
<given-names>J.</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<aff id="A1">Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland
<sup>1</sup>
</aff>
</contrib-group>
<author-notes>
<corresp></corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>1</day>
<month>12</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>29</day>
<month>2</month>
<year>2012</year>
</pub-date>
<volume>59</volume>
<issue>4</issue>
<fpage>381</fpage>
<lpage>387</lpage>
<permissions>
<license license-type="open-access">
<license-p>This content is open access.</license-p>
</license>
</permissions>
<related-article related-article-type="pdf" xlink:href="v10175-011-0045-7.pdf"></related-article>
<abstract xml:lang="en">
<title>2.1 μm emission of Tm
<sup>3+</sup>
/Ho
<sup>3+</sup>
- doped antimony-silicate glasses for active optical fibre</title>
<p>Tm
<sup>3+</sup>
/Ho
<sup>3+</sup>
- doped antimony-silicate optical fibre with 2.1 μm emission has been presented. Luminescence corresponding to
<sup>5</sup>
I
<sub>7</sub>
<sup>5</sup>
I
<sub>8</sub>
transition in holmium was obtained by energy transfer between Tm
<sup>3+</sup>
and Ho
<sup>3+</sup>
ions. The analysis of the luminescence mechanism showed a significant influence of the glass composition (low phonon content) on the emission intensity. Optimization of the active elements content, presented in the paper, allowed to indicate that a strong emission intensity at 2 μm in the fabricated glasses was obtained for the molar composition of 1% Tm
<sub>2</sub>
O
<sub>3</sub>
: 0.75% Ho
<sub>2</sub>
O
<sub>3</sub>
. According to the Förster-Dexter theory, the efficiency of energy transfer of the
<sup>3</sup>
F
<sub>4</sub>
(Tm
<sup>3+</sup>
) →
<sup>5</sup>
I
<sub>7</sub>
(Ho
<sup>3+</sup>
) transition was calculated. Moreover, it was found that the full width at half maximum (FWHM) of luminescence in the range of 1.6 - 2.2 μm strongly depends on the Tm
<sup>3+</sup>
/Ho
<sup>3+</sup>
ratio. The optimization of Tm
<sup>3+</sup>
/Ho
<sup>3+</sup>
transfer in antimony-silicate glasses allowed to fabricate optical fibre with narrowing and red-shifting of emission at 2.1 μm.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>antimony-silicate glasses</kwd>
<kwd>Tm
<sup>3+</sup>
/Ho
<sup>3+</sup>
glasses</kwd>
<kwd>active optical fibre</kwd>
</kwd-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Żmojda</namePart>
<affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Dorosz</namePart>
<affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Dorosz</namePart>
<affiliation>Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15- 351 Białystok, Poland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Versita</publisher>
<dateIssued encoding="w3cdtf">2011-12-01</dateIssued>
<dateCreated encoding="w3cdtf">2012-02-29</dateCreated>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Tm3+/Ho3+ - doped antimony-silicate optical fibre with 2.1 μm emission has been presented. Luminescence corresponding to 5I7 → 5I8 transition in holmium was obtained by energy transfer between Tm3+ and Ho3+ ions. The analysis of the luminescence mechanism showed a significant influence of the glass composition (low phonon content) on the emission intensity. Optimization of the active elements content, presented in the paper, allowed to indicate that a strong emission intensity at 2 μm in the fabricated glasses was obtained for the molar composition of 1% Tm2O3 : 0.75% Ho2O3. According to the Förster-Dexter theory, the efficiency of energy transfer of the 3F4 (Tm3+) → 5I7 (Ho3+) transition was calculated. Moreover, it was found that the full width at half maximum (FWHM) of luminescence in the range of 1.6 - 2.2 μm strongly depends on the Tm3+/Ho3+ ratio. The optimization of Tm3+/Ho3+ transfer in antimony-silicate glasses allowed to fabricate optical fibre with narrowing and red-shifting of emission at 2.1 μm.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>antimony-silicate glasses</topic>
<topic>Tm3+/Ho3+ glasses</topic>
<topic>active optical fibre</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Bulletin of the Polish Academy of Sciences: Technical Sciences</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo></originInfo>
<identifier type="ISSN">0239-7528</identifier>
<identifier type="PublisherID">BPASTS</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>59</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>381</start>
<end>387</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">17A1674AD5A28AEB6513865340F8CF0B53960561</identifier>
<identifier type="ark">ark:/67375/QT4-DNWHH58P-7</identifier>
<identifier type="DOI">10.2478/v10175-011-0045-7</identifier>
<identifier type="ArticleID">v10175-011-0045-7</identifier>
<identifier type="pdf">v10175-011-0045-7.pdf</identifier>
<accessCondition type="use and reproduction" contentType="open-access">This content is open access.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-B4QPMMZB-D">degruyter-journals</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/17A1674AD5A28AEB6513865340F8CF0B53960561/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:17A1674AD5A28AEB6513865340F8CF0B53960561
   |texte=   2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024