Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo detection of PARACEST agents with relaxation correction

Identifieur interne : 000469 ( Istex/Corpus ); précédent : 000468; suivant : 000470

In vivo detection of PARACEST agents with relaxation correction

Auteurs : Craig K. Jones ; Alex X. Li ; Mojmír Such ; Robert H. E. Hudson ; Ravi S. Menon ; Robert Bartha

Source :

RBID : ISTEX:1611F0A9928A6FBBC9E36091C8089CA084DE4134

English descriptors

Abstract

Several pulse sequences have been used to detect paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents in animals to quantify the uptake over time following a bolus injection. The observed signal change is a combination of relaxation effects and PARACEST contrast. The purpose of the current study was to isolate the PARACEST effect from the changes in bulk water relaxation induced by the PARACEST agent in vivo for the fast low‐angle shot pulse sequence. A fast low‐angle shot–based pulse sequence was used to acquire continuous images on a 9.4‐T MRI of phantoms and the kidneys of mice following PARACEST agent (Tm3+‐DOTAM‐Gly‐Lys) injection. A WALTZ‐16 pulse was applied before every second image to generate on‐resonance paramagnetic chemical exchange effects. Signal intensity changes of up to 50% were observed in the mouse kidney in the control images (without a WALTZ‐16 preparation pulse) due to altered bulk water relaxation induced by the PARACEST agent. Despite these changes, a clear on‐resonance paramagnetic chemical exchange effect of 4‐7% was also observed. A four‐pool exchange model was used to describe image signal intensity. This study demonstrates that in vivo on‐resonance paramagnetic chemical exchange effect contrast can be isolated from tissue relaxation time constant changes induced by a PARACEST agent that dominate the signal change. Magn Reson Med 63:1184–1192, 2010. © 2010 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/mrm.22340

Links to Exploration step

ISTEX:1611F0A9928A6FBBC9E36091C8089CA084DE4134

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo detection of PARACEST agents with relaxation correction</title>
<author>
<name sortKey="Jones, Craig K" sort="Jones, Craig K" uniqKey="Jones C" first="Craig K." last="Jones">Craig K. Jones</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Alex X" sort="Li, Alex X" uniqKey="Li A" first="Alex X." last="Li">Alex X. Li</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Such, Mojmir" sort="Such, Mojmir" uniqKey="Such M" first="Mojmír" last="Such">Mojmír Such</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hudson, Robert H E" sort="Hudson, Robert H E" uniqKey="Hudson R" first="Robert H. E." last="Hudson">Robert H. E. Hudson</name>
<affiliation>
<mods:affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menon, Ravi S" sort="Menon, Ravi S" uniqKey="Menon R" first="Ravi S." last="Menon">Ravi S. Menon</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bartha, Robert" sort="Bartha, Robert" uniqKey="Bartha R" first="Robert" last="Bartha">Robert Bartha</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rbartha@imaging.robarts.ca</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Centre for Functional and Metabolic Mapping, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, ON N6A 5K8, Canada===</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1611F0A9928A6FBBC9E36091C8089CA084DE4134</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/mrm.22340</idno>
<idno type="url">https://api.istex.fr/document/1611F0A9928A6FBBC9E36091C8089CA084DE4134/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000469</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000469</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">In vivo detection of PARACEST agents with relaxation correction
<ref type="note" target="#fn5"></ref>
</title>
<author>
<name sortKey="Jones, Craig K" sort="Jones, Craig K" uniqKey="Jones C" first="Craig K." last="Jones">Craig K. Jones</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Alex X" sort="Li, Alex X" uniqKey="Li A" first="Alex X." last="Li">Alex X. Li</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Such, Mojmir" sort="Such, Mojmir" uniqKey="Such M" first="Mojmír" last="Such">Mojmír Such</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hudson, Robert H E" sort="Hudson, Robert H E" uniqKey="Hudson R" first="Robert H. E." last="Hudson">Robert H. E. Hudson</name>
<affiliation>
<mods:affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menon, Ravi S" sort="Menon, Ravi S" uniqKey="Menon R" first="Ravi S." last="Menon">Ravi S. Menon</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bartha, Robert" sort="Bartha, Robert" uniqKey="Bartha R" first="Robert" last="Bartha">Robert Bartha</name>
<affiliation>
<mods:affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rbartha@imaging.robarts.ca</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Centre for Functional and Metabolic Mapping, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, ON N6A 5K8, Canada===</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Magnetic Resonance in Medicine</title>
<title level="j" type="alt">MAGNETIC RESONANCE IN MEDICINE</title>
<idno type="ISSN">0740-3194</idno>
<idno type="eISSN">1522-2594</idno>
<imprint>
<biblScope unit="vol">63</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1184">1184</biblScope>
<biblScope unit="page" to="1192">1192</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-05">2010-05</date>
</imprint>
<idno type="ISSN">0740-3194</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0740-3194</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agent concentration</term>
<term>Agent injection</term>
<term>Analytical solution</term>
<term>Baseline</term>
<term>Baseline value</term>
<term>Bloch equations</term>
<term>Bovine serum albumin</term>
<term>Bulk water</term>
<term>Bulk water protons</term>
<term>Bulk water relaxation</term>
<term>Bulk water visibility</term>
<term>Chemical shift</term>
<term>Contrast agent</term>
<term>Contrast agent injection</term>
<term>Contrast agents</term>
<term>Control images</term>
<term>Current study</term>
<term>Detection sensitivity</term>
<term>Echo time</term>
<term>Exchange rate</term>
<term>Exchange terms</term>
<term>Exchangeable proton</term>
<term>Exchangeable protons</term>
<term>Exponential</term>
<term>Exponential relation</term>
<term>Flash images</term>
<term>Flash pulse sequence</term>
<term>Flash sequence</term>
<term>Flash signal equation</term>
<term>Flip angle</term>
<term>Good agreement</term>
<term>Gradient echo pulse sequence</term>
<term>Image signal intensity</term>
<term>Imaging</term>
<term>Initial value</term>
<term>Kidney</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Medulla</term>
<term>Medulla region</term>
<term>Metabolic mapping</term>
<term>Mouse kidney</term>
<term>Oparachee</term>
<term>Oparachee contrast</term>
<term>Oparachee curve</term>
<term>Oparachee effect</term>
<term>Oparachee mechanism</term>
<term>Oparachee percentage change</term>
<term>Oparachee signal</term>
<term>Paracest</term>
<term>Paracest agent</term>
<term>Paracest agents</term>
<term>Paracest effect</term>
<term>Paramagnetic chemical exchange effects</term>
<term>Paramagnetic chemical exchange saturation transfer</term>
<term>Phantom</term>
<term>Phantom relaxation measurements</term>
<term>Physiologic parameters</term>
<term>Preparation pulse</term>
<term>Previous studies</term>
<term>Proton</term>
<term>Proton chemical exchange</term>
<term>Pulse</term>
<term>Pulse sequence</term>
<term>Pulse sequences</term>
<term>Relaxation</term>
<term>Relaxation effects</term>
<term>Relaxation mechanisms</term>
<term>Relaxation parameters</term>
<term>Relaxation time</term>
<term>Relaxation time constants</term>
<term>Reson</term>
<term>Robarts research institute</term>
<term>Robert bartha</term>
<term>Second acquisition</term>
<term>Second image</term>
<term>Siflash</term>
<term>Signal change</term>
<term>Signal changes</term>
<term>Signal equation</term>
<term>Signal intensities</term>
<term>Signal variation</term>
<term>Simodeled</term>
<term>Simodeled flash</term>
<term>Slow exchange condition</term>
<term>Such sequences</term>
<term>Superior edge</term>
<term>Time constants</term>
<term>Time course</term>
<term>Time courses</term>
<term>Time point</term>
<term>Vivo</term>
<term>Vivo agent concentration</term>
<term>Vivo detection</term>
<term>Vivo paracest</term>
<term>Waltz preparation</term>
<term>Western ontario</term>
<term>Zhang</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Agent concentration</term>
<term>Agent injection</term>
<term>Analytical solution</term>
<term>Baseline</term>
<term>Baseline value</term>
<term>Bloch equations</term>
<term>Bovine serum albumin</term>
<term>Bulk water</term>
<term>Bulk water protons</term>
<term>Bulk water relaxation</term>
<term>Bulk water visibility</term>
<term>Chemical shift</term>
<term>Contrast agent</term>
<term>Contrast agent injection</term>
<term>Contrast agents</term>
<term>Control images</term>
<term>Current study</term>
<term>Detection sensitivity</term>
<term>Echo time</term>
<term>Exchange rate</term>
<term>Exchange terms</term>
<term>Exchangeable proton</term>
<term>Exchangeable protons</term>
<term>Exponential</term>
<term>Exponential relation</term>
<term>Flash images</term>
<term>Flash pulse sequence</term>
<term>Flash sequence</term>
<term>Flash signal equation</term>
<term>Flip angle</term>
<term>Good agreement</term>
<term>Gradient echo pulse sequence</term>
<term>Image signal intensity</term>
<term>Imaging</term>
<term>Initial value</term>
<term>Kidney</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Medulla</term>
<term>Medulla region</term>
<term>Metabolic mapping</term>
<term>Mouse kidney</term>
<term>Oparachee</term>
<term>Oparachee contrast</term>
<term>Oparachee curve</term>
<term>Oparachee effect</term>
<term>Oparachee mechanism</term>
<term>Oparachee percentage change</term>
<term>Oparachee signal</term>
<term>Paracest</term>
<term>Paracest agent</term>
<term>Paracest agents</term>
<term>Paracest effect</term>
<term>Paramagnetic chemical exchange effects</term>
<term>Paramagnetic chemical exchange saturation transfer</term>
<term>Phantom</term>
<term>Phantom relaxation measurements</term>
<term>Physiologic parameters</term>
<term>Preparation pulse</term>
<term>Previous studies</term>
<term>Proton</term>
<term>Proton chemical exchange</term>
<term>Pulse</term>
<term>Pulse sequence</term>
<term>Pulse sequences</term>
<term>Relaxation</term>
<term>Relaxation effects</term>
<term>Relaxation mechanisms</term>
<term>Relaxation parameters</term>
<term>Relaxation time</term>
<term>Relaxation time constants</term>
<term>Reson</term>
<term>Robarts research institute</term>
<term>Robert bartha</term>
<term>Second acquisition</term>
<term>Second image</term>
<term>Siflash</term>
<term>Signal change</term>
<term>Signal changes</term>
<term>Signal equation</term>
<term>Signal intensities</term>
<term>Signal variation</term>
<term>Simodeled</term>
<term>Simodeled flash</term>
<term>Slow exchange condition</term>
<term>Such sequences</term>
<term>Superior edge</term>
<term>Time constants</term>
<term>Time course</term>
<term>Time courses</term>
<term>Time point</term>
<term>Vivo</term>
<term>Vivo agent concentration</term>
<term>Vivo detection</term>
<term>Vivo paracest</term>
<term>Waltz preparation</term>
<term>Western ontario</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several pulse sequences have been used to detect paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents in animals to quantify the uptake over time following a bolus injection. The observed signal change is a combination of relaxation effects and PARACEST contrast. The purpose of the current study was to isolate the PARACEST effect from the changes in bulk water relaxation induced by the PARACEST agent in vivo for the fast low‐angle shot pulse sequence. A fast low‐angle shot–based pulse sequence was used to acquire continuous images on a 9.4‐T MRI of phantoms and the kidneys of mice following PARACEST agent (Tm3+‐DOTAM‐Gly‐Lys) injection. A WALTZ‐16 pulse was applied before every second image to generate on‐resonance paramagnetic chemical exchange effects. Signal intensity changes of up to 50% were observed in the mouse kidney in the control images (without a WALTZ‐16 preparation pulse) due to altered bulk water relaxation induced by the PARACEST agent. Despite these changes, a clear on‐resonance paramagnetic chemical exchange effect of 4‐7% was also observed. A four‐pool exchange model was used to describe image signal intensity. This study demonstrates that in vivo on‐resonance paramagnetic chemical exchange effect contrast can be isolated from tissue relaxation time constant changes induced by a PARACEST agent that dominate the signal change. Magn Reson Med 63:1184–1192, 2010. © 2010 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>paracest</json:string>
<json:string>oparachee</json:string>
<json:string>medulla</json:string>
<json:string>oparachee effect</json:string>
<json:string>magn</json:string>
<json:string>reson</json:string>
<json:string>preparation pulse</json:string>
<json:string>siflash</json:string>
<json:string>agent concentration</json:string>
<json:string>magn reson</json:string>
<json:string>paracest agents</json:string>
<json:string>paracest effect</json:string>
<json:string>relaxation time constants</json:string>
<json:string>simodeled</json:string>
<json:string>relaxation parameters</json:string>
<json:string>current study</json:string>
<json:string>signal changes</json:string>
<json:string>paracest agent</json:string>
<json:string>agent injection</json:string>
<json:string>mouse kidney</json:string>
<json:string>zhang</json:string>
<json:string>oparachee contrast</json:string>
<json:string>time courses</json:string>
<json:string>signal intensities</json:string>
<json:string>time course</json:string>
<json:string>pulse sequence</json:string>
<json:string>bulk water</json:string>
<json:string>signal change</json:string>
<json:string>baseline</json:string>
<json:string>flash sequence</json:string>
<json:string>bulk water visibility</json:string>
<json:string>proton</json:string>
<json:string>bloch equations</json:string>
<json:string>exponential relation</json:string>
<json:string>western ontario</json:string>
<json:string>oparachee signal</json:string>
<json:string>oparachee percentage change</json:string>
<json:string>chemical shift</json:string>
<json:string>relaxation effects</json:string>
<json:string>vivo paracest</json:string>
<json:string>baseline value</json:string>
<json:string>echo time</json:string>
<json:string>relaxation</json:string>
<json:string>imaging</json:string>
<json:string>exponential</json:string>
<json:string>phantom</json:string>
<json:string>such sequences</json:string>
<json:string>exchange terms</json:string>
<json:string>previous studies</json:string>
<json:string>contrast agent</json:string>
<json:string>oparachee mechanism</json:string>
<json:string>contrast agents</json:string>
<json:string>medulla region</json:string>
<json:string>contrast agent injection</json:string>
<json:string>flash images</json:string>
<json:string>signal equation</json:string>
<json:string>bulk water protons</json:string>
<json:string>kidney</json:string>
<json:string>pulse</json:string>
<json:string>vivo</json:string>
<json:string>flip angle</json:string>
<json:string>superior edge</json:string>
<json:string>time point</json:string>
<json:string>second acquisition</json:string>
<json:string>bovine serum albumin</json:string>
<json:string>vivo detection</json:string>
<json:string>relaxation time</json:string>
<json:string>exchange rate</json:string>
<json:string>detection sensitivity</json:string>
<json:string>slow exchange condition</json:string>
<json:string>time constants</json:string>
<json:string>exchangeable proton</json:string>
<json:string>robarts research institute</json:string>
<json:string>phantom relaxation measurements</json:string>
<json:string>metabolic mapping</json:string>
<json:string>exchangeable protons</json:string>
<json:string>physiologic parameters</json:string>
<json:string>flash signal equation</json:string>
<json:string>simodeled flash</json:string>
<json:string>gradient echo pulse sequence</json:string>
<json:string>image signal intensity</json:string>
<json:string>control images</json:string>
<json:string>paramagnetic chemical exchange effects</json:string>
<json:string>second image</json:string>
<json:string>bulk water relaxation</json:string>
<json:string>good agreement</json:string>
<json:string>oparachee curve</json:string>
<json:string>paramagnetic chemical exchange saturation transfer</json:string>
<json:string>initial value</json:string>
<json:string>vivo agent concentration</json:string>
<json:string>relaxation mechanisms</json:string>
<json:string>waltz preparation</json:string>
<json:string>analytical solution</json:string>
<json:string>signal variation</json:string>
<json:string>pulse sequences</json:string>
<json:string>proton chemical exchange</json:string>
<json:string>robert bartha</json:string>
<json:string>flash pulse sequence</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Craig K. Jones</name>
<affiliations>
<json:string>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alex X. Li</name>
<affiliations>
<json:string>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</json:string>
<json:string>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mojmír Suchý</name>
<affiliations>
<json:string>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</json:string>
<json:string>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert H. E. Hudson</name>
<affiliations>
<json:string>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ravi S. Menon</name>
<affiliations>
<json:string>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</json:string>
<json:string>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert Bartha</name>
<affiliations>
<json:string>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</json:string>
<json:string>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</json:string>
<json:string>Centre for Functional and Metabolic Mapping, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, ON N6A 5K8, Canada===</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PARACEST</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>in‐vivo</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>kidney</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>OPARACHEE</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>contrast agent</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>MRI</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chemical exchange</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>relaxation, mouse</value>
</json:item>
</subject>
<articleId>
<json:string>MRM22340</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Several pulse sequences have been used to detect paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents in animals to quantify the uptake over time following a bolus injection. The observed signal change is a combination of relaxation effects and PARACEST contrast. The purpose of the current study was to isolate the PARACEST effect from the changes in bulk water relaxation induced by the PARACEST agent in vivo for the fast low‐angle shot pulse sequence. A fast low‐angle shot–based pulse sequence was used to acquire continuous images on a 9.4‐T MRI of phantoms and the kidneys of mice following PARACEST agent (Tm3+‐DOTAM‐Gly‐Lys) injection. A WALTZ‐16 pulse was applied before every second image to generate on‐resonance paramagnetic chemical exchange effects. Signal intensity changes of up to 50% were observed in the mouse kidney in the control images (without a WALTZ‐16 preparation pulse) due to altered bulk water relaxation induced by the PARACEST agent. Despite these changes, a clear on‐resonance paramagnetic chemical exchange effect of 4‐7% was also observed. A four‐pool exchange model was used to describe image signal intensity. This study demonstrates that in vivo on‐resonance paramagnetic chemical exchange effect contrast can be isolated from tissue relaxation time constant changes induced by a PARACEST agent that dominate the signal change. Magn Reson Med 63:1184–1192, 2010. © 2010 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.604</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1449</abstractCharCount>
<pdfWordCount>5121</pdfWordCount>
<pdfCharCount>31327</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>217</abstractWordCount>
</qualityIndicators>
<title>In vivo detection of PARACEST agents with relaxation correction</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Magnetic Resonance in Medicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1522-2594</json:string>
</doi>
<issn>
<json:string>0740-3194</json:string>
</issn>
<eissn>
<json:string>1522-2594</json:string>
</eissn>
<publisherId>
<json:string>MRM</json:string>
</publisherId>
<volume>63</volume>
<issue>5</issue>
<pages>
<first>1184</first>
<last>1192</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Full Paper</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>radiology, nuclear medicine & medical imaging</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>nuclear medicine & medical imaging</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
<json:string>techniques d'exploration et de diagnostic (generalites)</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/mrm.22340</json:string>
</doi>
<id>1611F0A9928A6FBBC9E36091C8089CA084DE4134</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1611F0A9928A6FBBC9E36091C8089CA084DE4134/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1611F0A9928A6FBBC9E36091C8089CA084DE4134/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1611F0A9928A6FBBC9E36091C8089CA084DE4134/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">In vivo detection of PARACEST agents with relaxation correction
<ref type="note" target="#fn5"></ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2010 Wiley‐Liss, Inc.</licence>
</availability>
<date type="published" when="2010-05"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">In vivo detection of PARACEST agents with relaxation correction
<ref type="note" target="#fn5"></ref>
</title>
<title level="a" type="short" xml:lang="en">In Vivo PARACEST MRI</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Craig K.</forename>
<surname>Jones</surname>
</persName>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Alex X.</forename>
<surname>Li</surname>
</persName>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
<affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Mojmír</forename>
<surname>Suchý</surname>
</persName>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
<affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Robert H. E.</forename>
<surname>Hudson</surname>
</persName>
<affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Ravi S.</forename>
<surname>Menon</surname>
</persName>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
<affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<forename type="first">Robert</forename>
<surname>Bartha</surname>
</persName>
<email>rbartha@imaging.robarts.ca</email>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
<affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, ON N6A 5K8, Canada===</affiliation>
</author>
<idno type="istex">1611F0A9928A6FBBC9E36091C8089CA084DE4134</idno>
<idno type="ark">ark:/67375/WNG-5JJT3SWN-W</idno>
<idno type="DOI">10.1002/mrm.22340</idno>
<idno type="unit">MRM22340</idno>
<idno type="toTypesetVersion">file:MRM.MRM22340.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Magnetic Resonance in Medicine</title>
<title level="j" type="alt">MAGNETIC RESONANCE IN MEDICINE</title>
<idno type="pISSN">0740-3194</idno>
<idno type="eISSN">1522-2594</idno>
<idno type="book-DOI">10.1002/(ISSN)1522-2594</idno>
<idno type="book-part-DOI">10.1002/mrm.v63:5</idno>
<idno type="product">MRM</idno>
<imprint>
<biblScope unit="vol">63</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1184">1184</biblScope>
<biblScope unit="page" to="1192">1192</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-05"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Several pulse sequences have been used to detect paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents in animals to quantify the uptake over time following a bolus injection. The observed signal change is a combination of relaxation effects and PARACEST contrast. The purpose of the current study was to isolate the PARACEST effect from the changes in bulk water relaxation induced by the PARACEST agent in vivo for the fast low‐angle shot pulse sequence. A fast low‐angle shot–based pulse sequence was used to acquire continuous images on a 9.4‐T MRI of phantoms and the kidneys of mice following PARACEST agent (Tm
<hi rend="superscript">3+</hi>
‐DOTAM‐Gly‐Lys) injection. A WALTZ‐16 pulse was applied before every second image to generate on‐resonance paramagnetic chemical exchange effects. Signal intensity changes of up to 50% were observed in the mouse kidney in the control images (without a WALTZ‐16 preparation pulse) due to altered bulk water relaxation induced by the PARACEST agent. Despite these changes, a clear on‐resonance paramagnetic chemical exchange effect of 4‐7% was also observed. A four‐pool exchange model was used to describe image signal intensity. This study demonstrates that in vivo on‐resonance paramagnetic chemical exchange effect contrast can be isolated from tissue relaxation time constant changes induced by a PARACEST agent that dominate the signal change. Magn Reson Med 63:1184–1192, 2010. © 2010 Wiley‐Liss, Inc.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">PARACEST</term>
<term xml:id="kwd2">in‐vivo</term>
<term xml:id="kwd3">kidney</term>
<term xml:id="kwd4">OPARACHEE</term>
<term xml:id="kwd5">contrast agent</term>
<term xml:id="kwd6">MRI</term>
<term xml:id="kwd7">chemical exchange</term>
<term xml:id="kwd8">relaxation, mouse</term>
</keywords>
<keywords rend="articleCategory">
<term>Full Paper</term>
</keywords>
<keywords rend="tocHeading1">
<term>Full Papers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1611F0A9928A6FBBC9E36091C8089CA084DE4134/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1522-2594</doi>
<issn type="print">0740-3194</issn>
<issn type="electronic">1522-2594</issn>
<idGroup>
<id type="product" value="MRM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="MAGNETIC RESONANCE IN MEDICINE">Magnetic Resonance in Medicine</title>
<title type="short">Magn. Reson. Med.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi origin="wiley" registered="yes">10.1002/mrm.v63:5</doi>
<numberingGroup>
<numbering type="journalVolume" number="63">63</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2010-05">May 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="60" status="forIssue" accessType="open">
<doi origin="wiley" registered="yes">10.1002/mrm.22340</doi>
<idGroup>
<id type="unit" value="MRM22340"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Full Paper</title>
<title type="tocHeading1">Full Papers</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-06-17"></event>
<event type="manuscriptRevised" date="2009-11-03"></event>
<event type="manuscriptAccepted" date="2009-12-01"></event>
<event type="firstOnline" date="2010-04-23"></event>
<event type="publishedOnlineFinalForm" date="2010-04-23"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.5 mode:FullText mathml2tex" date="2012-06-12"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-19"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1184</numbering>
<numbering type="pageLast">1192</numbering>
</numberingGroup>
<correspondenceTo>Centre for Functional and Metabolic Mapping, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, ON N6A 5K8, Canada===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MRM.MRM22340.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="22"></count>
<count type="wordTotal" number="6200"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">In vivo detection of PARACEST agents with relaxation correction
<link href="#fn5"></link>
</title>
<title type="short" xml:lang="en">In Vivo PARACEST MRI</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Craig K.</givenNames>
<familyName>Jones</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Alex X.</givenNames>
<familyName>Li</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1 #af3">
<personName>
<givenNames>Mojmír</givenNames>
<familyName>Suchý</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Robert H. E.</givenNames>
<familyName>Hudson</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Ravi S.</givenNames>
<familyName>Menon</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1 #af2" corresponding="yes">
<personName>
<givenNames>Robert</givenNames>
<familyName>Bartha</familyName>
</personName>
<contactDetails>
<email>rbartha@imaging.robarts.ca</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="CA" type="organization">
<unparsedAffiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="CA" type="organization">
<unparsedAffiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="CA" type="organization">
<unparsedAffiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">PARACEST</keyword>
<keyword xml:id="kwd2">in‐vivo</keyword>
<keyword xml:id="kwd3">kidney</keyword>
<keyword xml:id="kwd4">OPARACHEE</keyword>
<keyword xml:id="kwd5">contrast agent</keyword>
<keyword xml:id="kwd6">MRI</keyword>
<keyword xml:id="kwd7">chemical exchange</keyword>
<keyword xml:id="kwd8">relaxation, mouse</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Unknown funding agency</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Several pulse sequences have been used to detect paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents in animals to quantify the uptake over time following a bolus injection. The observed signal change is a combination of relaxation effects and PARACEST contrast. The purpose of the current study was to isolate the PARACEST effect from the changes in bulk water relaxation induced by the PARACEST agent in vivo for the fast low‐angle shot pulse sequence. A fast low‐angle shot–based pulse sequence was used to acquire continuous images on a 9.4‐T MRI of phantoms and the kidneys of mice following PARACEST agent (Tm
<sup>3+</sup>
‐DOTAM‐Gly‐Lys) injection. A WALTZ‐16 pulse was applied before every second image to generate on‐resonance paramagnetic chemical exchange effects. Signal intensity changes of up to 50% were observed in the mouse kidney in the control images (without a WALTZ‐16 preparation pulse) due to altered bulk water relaxation induced by the PARACEST agent. Despite these changes, a clear on‐resonance paramagnetic chemical exchange effect of 4‐7% was also observed. A four‐pool exchange model was used to describe image signal intensity. This study demonstrates that in vivo on‐resonance paramagnetic chemical exchange effect contrast can be isolated from tissue relaxation time constant changes induced by a PARACEST agent that dominate the signal change. Magn Reson Med 63:1184–1192, 2010. © 2010 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn5">
<p>Re‐use of this article is permitted in accordance with the Terms and Conditions set out at
<url href="http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms">http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms</url>
</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>In vivo detection of PARACEST agents with relaxation correction</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>In Vivo PARACEST MRI</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>In vivo detection of PARACEST agents with relaxation correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Craig K.</namePart>
<namePart type="family">Jones</namePart>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex X.</namePart>
<namePart type="family">Li</namePart>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</affiliation>
<affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mojmír</namePart>
<namePart type="family">Suchý</namePart>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</affiliation>
<affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert H. E.</namePart>
<namePart type="family">Hudson</namePart>
<affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ravi S.</namePart>
<namePart type="family">Menon</namePart>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</affiliation>
<affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Bartha</namePart>
<affiliation>Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada</affiliation>
<affiliation>Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada</affiliation>
<affiliation>E-mail: rbartha@imaging.robarts.ca</affiliation>
<affiliation>Correspondence address: Centre for Functional and Metabolic Mapping, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, ON N6A 5K8, Canada===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-05</dateIssued>
<dateCaptured encoding="w3cdtf">2009-06-17</dateCaptured>
<dateValid encoding="w3cdtf">2009-12-01</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">4</extent>
<extent unit="tables">2</extent>
<extent unit="references">22</extent>
<extent unit="words">6200</extent>
</physicalDescription>
<abstract lang="en">Several pulse sequences have been used to detect paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents in animals to quantify the uptake over time following a bolus injection. The observed signal change is a combination of relaxation effects and PARACEST contrast. The purpose of the current study was to isolate the PARACEST effect from the changes in bulk water relaxation induced by the PARACEST agent in vivo for the fast low‐angle shot pulse sequence. A fast low‐angle shot–based pulse sequence was used to acquire continuous images on a 9.4‐T MRI of phantoms and the kidneys of mice following PARACEST agent (Tm3+‐DOTAM‐Gly‐Lys) injection. A WALTZ‐16 pulse was applied before every second image to generate on‐resonance paramagnetic chemical exchange effects. Signal intensity changes of up to 50% were observed in the mouse kidney in the control images (without a WALTZ‐16 preparation pulse) due to altered bulk water relaxation induced by the PARACEST agent. Despite these changes, a clear on‐resonance paramagnetic chemical exchange effect of 4‐7% was also observed. A four‐pool exchange model was used to describe image signal intensity. This study demonstrates that in vivo on‐resonance paramagnetic chemical exchange effect contrast can be isolated from tissue relaxation time constant changes induced by a PARACEST agent that dominate the signal change. Magn Reson Med 63:1184–1192, 2010. © 2010 Wiley‐Liss, Inc.</abstract>
<note type="content">*Re‐use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms</note>
<note type="funding">Unknown funding agency</note>
<subject lang="en">
<genre>keywords</genre>
<topic>PARACEST</topic>
<topic>in‐vivo</topic>
<topic>kidney</topic>
<topic>OPARACHEE</topic>
<topic>contrast agent</topic>
<topic>MRI</topic>
<topic>chemical exchange</topic>
<topic>relaxation, mouse</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Magnetic Resonance in Medicine</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Magn. Reson. Med.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Full Paper</topic>
</subject>
<identifier type="ISSN">0740-3194</identifier>
<identifier type="eISSN">1522-2594</identifier>
<identifier type="DOI">10.1002/(ISSN)1522-2594</identifier>
<identifier type="PublisherID">MRM</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>1184</start>
<end>1192</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">1611F0A9928A6FBBC9E36091C8089CA084DE4134</identifier>
<identifier type="ark">ark:/67375/WNG-5JJT3SWN-W</identifier>
<identifier type="DOI">10.1002/mrm.22340</identifier>
<identifier type="ArticleID">MRM22340</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/1611F0A9928A6FBBC9E36091C8089CA084DE4134/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000469 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000469 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1611F0A9928A6FBBC9E36091C8089CA084DE4134
   |texte=   In vivo detection of PARACEST agents with relaxation correction
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024