Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids

Identifieur interne : 000305 ( Istex/Corpus ); précédent : 000304; suivant : 000306

Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids

Auteurs : Ahmed Moussa ; Christine Pham ; Shruthi Bommireddy ; Gilles Muller

Source :

RBID : ISTEX:0E84689966BCA756674BA0BDCF53826BC9F114B0

English descriptors

Abstract

The perturbation of the racemic equilibrium of luminescent D3 terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6‐pyridine‐dicarboxylic acid (DPA), by added chiral biomolecules such as L‐amino acids has been studied using circularly polarized luminescence and 13C NMR spectroscopy. It is shown in this work that the chiral‐induced equilibrium shift of [Tb(CDA)3]6− by L‐amino acids (i.e. L‐proline or L‐arginine) was largely influenced by the hydrogen‐bonding networks formed between the ligand interface of racemic [Tb(CDA)3]6− and these added chiral agents. The capping of potential hydrogen‐bonding sites by acetylation in L‐proline led to a ∼100‐fold drop in the induced optical activity of the [Tb(CDA)3]6−:N‐acetyl‐L‐proline system. This result suggested that the hydrogen‐bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)3]6− and added L‐amino acids. Chirality, 2009. © 2008 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/chir.20628

Links to Exploration step

ISTEX:0E84689966BCA756674BA0BDCF53826BC9F114B0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids</title>
<author>
<name sortKey="Moussa, Ahmed" sort="Moussa, Ahmed" uniqKey="Moussa A" first="Ahmed" last="Moussa">Ahmed Moussa</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pham, Christine" sort="Pham, Christine" uniqKey="Pham C" first="Christine" last="Pham">Christine Pham</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bommireddy, Shruthi" sort="Bommireddy, Shruthi" uniqKey="Bommireddy S" first="Shruthi" last="Bommireddy">Shruthi Bommireddy</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Gilles" sort="Muller, Gilles" uniqKey="Muller G" first="Gilles" last="Muller">Gilles Muller</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gilles.muller@sjsu.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Chemistry, San José State University, One Washington Square, San José, CA 95192‐0101</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0E84689966BCA756674BA0BDCF53826BC9F114B0</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/chir.20628</idno>
<idno type="url">https://api.istex.fr/document/0E84689966BCA756674BA0BDCF53826BC9F114B0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000305</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000305</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D
<hi rend="subscript">3</hi>
terbium(III) complexes and amino acids</title>
<author>
<name sortKey="Moussa, Ahmed" sort="Moussa, Ahmed" uniqKey="Moussa A" first="Ahmed" last="Moussa">Ahmed Moussa</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pham, Christine" sort="Pham, Christine" uniqKey="Pham C" first="Christine" last="Pham">Christine Pham</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bommireddy, Shruthi" sort="Bommireddy, Shruthi" uniqKey="Bommireddy S" first="Shruthi" last="Bommireddy">Shruthi Bommireddy</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Gilles" sort="Muller, Gilles" uniqKey="Muller G" first="Gilles" last="Muller">Gilles Muller</name>
<affiliation>
<mods:affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gilles.muller@sjsu.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Chemistry, San José State University, One Washington Square, San José, CA 95192‐0101</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Chirality</title>
<title level="j" type="alt">CHIRALITY</title>
<idno type="ISSN">0899-0042</idno>
<idno type="eISSN">1520-636X</idno>
<imprint>
<biblScope unit="vol">21</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="497">497</biblScope>
<biblScope unit="page" to="506">506</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-05">2009-05</date>
</imprint>
<idno type="ISSN">0899-0042</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0899-0042</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute stereochemistry</term>
<term>Acid</term>
<term>Active sites</term>
<term>Amino</term>
<term>Amino acid</term>
<term>Amino acids</term>
<term>Amino group</term>
<term>Analog compound</term>
<term>Aqueous solution</term>
<term>Aqueous solutions</term>
<term>Aromatic rings</term>
<term>Brittain</term>
<term>Carbon atoms</term>
<term>Carboxylate function</term>
<term>Carboxylic acids</term>
<term>Chelidamic acid</term>
<term>Chem</term>
<term>Chemical shifts</term>
<term>Chiral</term>
<term>Chiral agents</term>
<term>Chiral lanthanide complexes</term>
<term>Chiral molecules</term>
<term>Chiral probe</term>
<term>Chiral probes</term>
<term>Chiral recognition</term>
<term>Chirality</term>
<term>Circular dichroism</term>
<term>Circularly</term>
<term>Complex salts</term>
<term>Contract grant number</term>
<term>Coord chem</term>
<term>Coulombic forces</term>
<term>Dalton trans</term>
<term>Diastereomeric association</term>
<term>Drug discovery</term>
<term>Emission monochromator</term>
<term>Emission spectra</term>
<term>Equilibrium shift</term>
<term>Excitation</term>
<term>Excitation spectra</term>
<term>Excitation wavelengths</term>
<term>Experimental conditions</term>
<term>Form hydrogen bonds</term>
<term>Free unassociated</term>
<term>Gilles muller</term>
<term>Glum</term>
<term>Glum values</term>
<term>Guanidino group</term>
<term>High degree</term>
<term>Hydrophobic effects</term>
<term>Hydroxyl</term>
<term>Hydroxyl group</term>
<term>Inorg</term>
<term>Inorg chem</term>
<term>Jose state university</term>
<term>Lanthanide</term>
<term>Lanthanide complexes</term>
<term>Ligand</term>
<term>Ligand interface</term>
<term>Ligand ratio</term>
<term>Local structure</term>
<term>Luminescence</term>
<term>Luminescence dissymmetry factor</term>
<term>Luminescence dissymmetry ratio values</term>
<term>Luminescence spectroscopy</term>
<term>Luminescence studies</term>
<term>Opposite signs</term>
<term>Optical activity</term>
<term>Optical rotation values</term>
<term>Other hand</term>
<term>Perturbation</term>
<term>Pfeiffer</term>
<term>Pfeiffer effect</term>
<term>Positive charge</term>
<term>Practical guide</term>
<term>Preferential formation</term>
<term>Pyridine ring</term>
<term>Pyrrolidone rings</term>
<term>Racemic</term>
<term>Racemic complexes</term>
<term>Racemic equilibrium</term>
<term>Racemic mixtures</term>
<term>Racemic solution</term>
<term>Racemic solutions</term>
<term>Recognition mechanism</term>
<term>Side chain</term>
<term>Spectral range</term>
<term>Spectroscopic studies</term>
<term>Standard deviation</term>
<term>Various acids</term>
<term>Washington square</term>
<term>Zwitterionic form</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute stereochemistry</term>
<term>Acid</term>
<term>Active sites</term>
<term>Amino</term>
<term>Amino acid</term>
<term>Amino acids</term>
<term>Amino group</term>
<term>Analog compound</term>
<term>Aqueous solution</term>
<term>Aqueous solutions</term>
<term>Aromatic rings</term>
<term>Brittain</term>
<term>Carbon atoms</term>
<term>Carboxylate function</term>
<term>Carboxylic acids</term>
<term>Chelidamic acid</term>
<term>Chem</term>
<term>Chemical shifts</term>
<term>Chiral</term>
<term>Chiral agents</term>
<term>Chiral lanthanide complexes</term>
<term>Chiral molecules</term>
<term>Chiral probe</term>
<term>Chiral probes</term>
<term>Chiral recognition</term>
<term>Chirality</term>
<term>Circular dichroism</term>
<term>Circularly</term>
<term>Complex salts</term>
<term>Contract grant number</term>
<term>Coord chem</term>
<term>Coulombic forces</term>
<term>Dalton trans</term>
<term>Diastereomeric association</term>
<term>Drug discovery</term>
<term>Emission monochromator</term>
<term>Emission spectra</term>
<term>Equilibrium shift</term>
<term>Excitation</term>
<term>Excitation spectra</term>
<term>Excitation wavelengths</term>
<term>Experimental conditions</term>
<term>Form hydrogen bonds</term>
<term>Free unassociated</term>
<term>Gilles muller</term>
<term>Glum</term>
<term>Glum values</term>
<term>Guanidino group</term>
<term>High degree</term>
<term>Hydrophobic effects</term>
<term>Hydroxyl</term>
<term>Hydroxyl group</term>
<term>Inorg</term>
<term>Inorg chem</term>
<term>Jose state university</term>
<term>Lanthanide</term>
<term>Lanthanide complexes</term>
<term>Ligand</term>
<term>Ligand interface</term>
<term>Ligand ratio</term>
<term>Local structure</term>
<term>Luminescence</term>
<term>Luminescence dissymmetry factor</term>
<term>Luminescence dissymmetry ratio values</term>
<term>Luminescence spectroscopy</term>
<term>Luminescence studies</term>
<term>Opposite signs</term>
<term>Optical activity</term>
<term>Optical rotation values</term>
<term>Other hand</term>
<term>Perturbation</term>
<term>Pfeiffer</term>
<term>Pfeiffer effect</term>
<term>Positive charge</term>
<term>Practical guide</term>
<term>Preferential formation</term>
<term>Pyridine ring</term>
<term>Pyrrolidone rings</term>
<term>Racemic</term>
<term>Racemic complexes</term>
<term>Racemic equilibrium</term>
<term>Racemic mixtures</term>
<term>Racemic solution</term>
<term>Racemic solutions</term>
<term>Recognition mechanism</term>
<term>Side chain</term>
<term>Spectral range</term>
<term>Spectroscopic studies</term>
<term>Standard deviation</term>
<term>Various acids</term>
<term>Washington square</term>
<term>Zwitterionic form</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The perturbation of the racemic equilibrium of luminescent D3 terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6‐pyridine‐dicarboxylic acid (DPA), by added chiral biomolecules such as L‐amino acids has been studied using circularly polarized luminescence and 13C NMR spectroscopy. It is shown in this work that the chiral‐induced equilibrium shift of [Tb(CDA)3]6− by L‐amino acids (i.e. L‐proline or L‐arginine) was largely influenced by the hydrogen‐bonding networks formed between the ligand interface of racemic [Tb(CDA)3]6− and these added chiral agents. The capping of potential hydrogen‐bonding sites by acetylation in L‐proline led to a ∼100‐fold drop in the induced optical activity of the [Tb(CDA)3]6−:N‐acetyl‐L‐proline system. This result suggested that the hydrogen‐bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)3]6− and added L‐amino acids. Chirality, 2009. © 2008 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>chiral</json:string>
<json:string>racemic</json:string>
<json:string>chem</json:string>
<json:string>amino</json:string>
<json:string>chirality</json:string>
<json:string>amino acids</json:string>
<json:string>excitation</json:string>
<json:string>pfeiffer</json:string>
<json:string>circularly</json:string>
<json:string>luminescence</json:string>
<json:string>lanthanide</json:string>
<json:string>amino acid</json:string>
<json:string>hydroxyl</json:string>
<json:string>hydroxyl group</json:string>
<json:string>glum</json:string>
<json:string>pfeiffer effect</json:string>
<json:string>ligand interface</json:string>
<json:string>aqueous solution</json:string>
<json:string>racemic solution</json:string>
<json:string>inorg</json:string>
<json:string>ligand</json:string>
<json:string>chiral recognition</json:string>
<json:string>brittain</json:string>
<json:string>optical activity</json:string>
<json:string>perturbation</json:string>
<json:string>racemic equilibrium</json:string>
<json:string>glum values</json:string>
<json:string>inorg chem</json:string>
<json:string>racemic solutions</json:string>
<json:string>chelidamic acid</json:string>
<json:string>lanthanide complexes</json:string>
<json:string>aqueous solutions</json:string>
<json:string>coulombic forces</json:string>
<json:string>racemic complexes</json:string>
<json:string>chiral probes</json:string>
<json:string>recognition mechanism</json:string>
<json:string>chiral molecules</json:string>
<json:string>equilibrium shift</json:string>
<json:string>acid</json:string>
<json:string>carbon atoms</json:string>
<json:string>circular dichroism</json:string>
<json:string>pyridine ring</json:string>
<json:string>excitation wavelengths</json:string>
<json:string>guanidino group</json:string>
<json:string>side chain</json:string>
<json:string>aromatic rings</json:string>
<json:string>chiral lanthanide complexes</json:string>
<json:string>jose state university</json:string>
<json:string>luminescence studies</json:string>
<json:string>zwitterionic form</json:string>
<json:string>excitation spectra</json:string>
<json:string>amino group</json:string>
<json:string>high degree</json:string>
<json:string>drug discovery</json:string>
<json:string>ligand ratio</json:string>
<json:string>analog compound</json:string>
<json:string>chiral agents</json:string>
<json:string>luminescence dissymmetry ratio values</json:string>
<json:string>spectral range</json:string>
<json:string>various acids</json:string>
<json:string>carboxylic acids</json:string>
<json:string>emission spectra</json:string>
<json:string>hydrophobic effects</json:string>
<json:string>other hand</json:string>
<json:string>optical rotation values</json:string>
<json:string>positive charge</json:string>
<json:string>chemical shifts</json:string>
<json:string>opposite signs</json:string>
<json:string>luminescence dissymmetry factor</json:string>
<json:string>racemic mixtures</json:string>
<json:string>standard deviation</json:string>
<json:string>pyrrolidone rings</json:string>
<json:string>washington square</json:string>
<json:string>chiral probe</json:string>
<json:string>carboxylate function</json:string>
<json:string>emission monochromator</json:string>
<json:string>contract grant number</json:string>
<json:string>form hydrogen bonds</json:string>
<json:string>active sites</json:string>
<json:string>preferential formation</json:string>
<json:string>gilles muller</json:string>
<json:string>local structure</json:string>
<json:string>practical guide</json:string>
<json:string>spectroscopic studies</json:string>
<json:string>free unassociated</json:string>
<json:string>coord chem</json:string>
<json:string>dalton trans</json:string>
<json:string>luminescence spectroscopy</json:string>
<json:string>absolute stereochemistry</json:string>
<json:string>complex salts</json:string>
<json:string>experimental conditions</json:string>
<json:string>diastereomeric association</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Ahmed Moussa</name>
<affiliations>
<json:string>Department of Chemistry, San José State University, One Washington Square, San José, California</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christine Pham</name>
<affiliations>
<json:string>Department of Chemistry, San José State University, One Washington Square, San José, California</json:string>
</affiliations>
</json:item>
<json:item>
<name>Shruthi Bommireddy</name>
<affiliations>
<json:string>Department of Chemistry, San José State University, One Washington Square, San José, California</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gilles Muller</name>
<affiliations>
<json:string>Department of Chemistry, San José State University, One Washington Square, San José, California</json:string>
<json:string>Department of Chemistry, San José State University, One Washington Square, San José, CA 95192‐0101</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>circularly polarized luminescence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>lanthanide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chirality</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>amino acid</value>
</json:item>
</subject>
<articleId>
<json:string>CHIR20628</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The perturbation of the racemic equilibrium of luminescent D3 terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6‐pyridine‐dicarboxylic acid (DPA), by added chiral biomolecules such as L‐amino acids has been studied using circularly polarized luminescence and 13C NMR spectroscopy. It is shown in this work that the chiral‐induced equilibrium shift of [Tb(CDA)3]6− by L‐amino acids (i.e. L‐proline or L‐arginine) was largely influenced by the hydrogen‐bonding networks formed between the ligand interface of racemic [Tb(CDA)3]6− and these added chiral agents. The capping of potential hydrogen‐bonding sites by acetylation in L‐proline led to a ∼100‐fold drop in the induced optical activity of the [Tb(CDA)3]6−:N‐acetyl‐L‐proline system. This result suggested that the hydrogen‐bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)3]6− and added L‐amino acids. Chirality, 2009. © 2008 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>6.608</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>993</abstractCharCount>
<pdfWordCount>6104</pdfWordCount>
<pdfCharCount>39450</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>134</abstractWordCount>
</qualityIndicators>
<title>Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Chirality</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1520-636X</json:string>
</doi>
<issn>
<json:string>0899-0042</json:string>
</issn>
<eissn>
<json:string>1520-636X</json:string>
</eissn>
<publisherId>
<json:string>CHIR</json:string>
</publisherId>
<volume>21</volume>
<issue>5</issue>
<pages>
<first>497</first>
<last>506</last>
<total>10</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Regular Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>pharmacology & pharmacy</json:string>
<json:string>chemistry, organic</json:string>
<json:string>chemistry, medicinal</json:string>
<json:string>chemistry, analytical</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>organic chemistry</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1002/chir.20628</json:string>
</doi>
<id>0E84689966BCA756674BA0BDCF53826BC9F114B0</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0E84689966BCA756674BA0BDCF53826BC9F114B0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0E84689966BCA756674BA0BDCF53826BC9F114B0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0E84689966BCA756674BA0BDCF53826BC9F114B0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D
<hi rend="subscript">3</hi>
terbium(III) complexes and amino acids</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2008 Wiley‐Liss, Inc.</licence>
</availability>
<date type="published" when="2009-05"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D
<hi rend="subscript">3</hi>
terbium(III) complexes and amino acids</title>
<title level="a" type="short" xml:lang="en">Chiral Recognition of Amino Acids Using CPL</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Ahmed</forename>
<surname>Moussa</surname>
</persName>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Christine</forename>
<surname>Pham</surname>
</persName>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Shruthi</forename>
<surname>Bommireddy</surname>
</persName>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">Gilles</forename>
<surname>Muller</surname>
</persName>
<email>gilles.muller@sjsu.edu</email>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, CA 95192‐0101</affiliation>
</author>
<idno type="istex">0E84689966BCA756674BA0BDCF53826BC9F114B0</idno>
<idno type="ark">ark:/67375/WNG-4D4FFG2K-M</idno>
<idno type="DOI">10.1002/chir.20628</idno>
<idno type="unit">CHIR20628</idno>
<idno type="toTypesetVersion">file:CHIR.CHIR20628.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Chirality</title>
<title level="j" type="alt">CHIRALITY</title>
<idno type="pISSN">0899-0042</idno>
<idno type="eISSN">1520-636X</idno>
<idno type="book-DOI">10.1002/(ISSN)1520-636X</idno>
<idno type="book-part-DOI">10.1002/chir.v21:5</idno>
<idno type="product">CHIR</idno>
<imprint>
<biblScope unit="vol">21</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="497">497</biblScope>
<biblScope unit="page" to="506">506</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-05"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>The perturbation of the racemic equilibrium of luminescent D
<hi rend="subscript">3</hi>
terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6‐pyridine‐dicarboxylic acid (DPA), by added chiral biomolecules such as
<hi rend="smallCaps">L</hi>
‐amino acids has been studied using circularly polarized luminescence and
<hi rend="superscript">13</hi>
C NMR spectroscopy. It is shown in this work that the chiral‐induced equilibrium shift of [Tb(CDA)
<hi rend="subscript">3</hi>
]
<hi rend="superscript">6−</hi>
by
<hi rend="smallCaps">L</hi>
‐amino acids (i.e.
<hi rend="smallCaps">L</hi>
‐proline or
<hi rend="smallCaps">L</hi>
‐arginine) was largely influenced by the hydrogen‐bonding networks formed between the ligand interface of racemic [Tb(CDA)
<hi rend="subscript">3</hi>
]
<hi rend="superscript">6−</hi>
and these added chiral agents. The capping of potential hydrogen‐bonding sites by acetylation in
<hi rend="smallCaps">L</hi>
‐proline led to a ∼100‐fold drop in the induced optical activity of the [Tb(CDA)
<hi rend="subscript">3</hi>
]
<hi rend="superscript">6−</hi>
:
<hi rend="italic">N</hi>
‐acetyl‐
<hi rend="smallCaps">L</hi>
‐proline system. This result suggested that the hydrogen‐bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)
<hi rend="subscript">3</hi>
]
<hi rend="superscript">6−</hi>
and added
<hi rend="smallCaps">L</hi>
‐amino acids. Chirality, 2009. © 2008 Wiley‐Liss, Inc.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">circularly polarized luminescence</term>
<term xml:id="kwd2">lanthanide</term>
<term xml:id="kwd3">chirality</term>
<term xml:id="kwd4">amino acid</term>
</keywords>
<keywords rend="articleCategory">
<term>Regular Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Regular Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0E84689966BCA756674BA0BDCF53826BC9F114B0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1520-636X</doi>
<issn type="print">0899-0042</issn>
<issn type="electronic">1520-636X</issn>
<idGroup>
<id type="product" value="CHIR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="CHIRALITY">Chirality</title>
<title type="subtitle">The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry</title>
<title type="short">Chirality</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi origin="wiley" registered="yes">10.1002/chir.v21:5</doi>
<numberingGroup>
<numbering type="journalVolume" number="21">21</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2009-05">May 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="30" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/chir.20628</doi>
<idGroup>
<id type="unit" value="CHIR20628"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Regular Article</title>
<title type="tocHeading1">Regular Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2008 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-02-28"></event>
<event type="manuscriptAccepted" date="2008-05-28"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2008-08-12"></event>
<event type="firstOnline" date="2008-08-12"></event>
<event type="publishedOnlineFinalForm" date="2009-04-07"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-09"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">497</numbering>
<numbering type="pageLast">506</numbering>
</numberingGroup>
<correspondenceTo>Department of Chemistry, San José State University, One Washington Square, San José, CA 95192‐0101</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CHIR.CHIR20628.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="55"></count>
<count type="wordTotal" number="1177"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D
<sub>3</sub>
terbium(III) complexes and amino acids</title>
<title type="short" xml:lang="en">Chiral Recognition of Amino Acids Using CPL</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Ahmed</givenNames>
<familyName>Moussa</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Christine</givenNames>
<familyName>Pham</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Shruthi</givenNames>
<familyName>Bommireddy</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Gilles</givenNames>
<familyName>Muller</familyName>
</personName>
<contactDetails>
<email>gilles.muller@sjsu.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">circularly polarized luminescence</keyword>
<keyword xml:id="kwd2">lanthanide</keyword>
<keyword xml:id="kwd3">chirality</keyword>
<keyword xml:id="kwd4">amino acid</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Institute of Health Minority Biomedical Research Support</fundingAgency>
<fundingNumber>2 S06 GM008192‐24A1</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Research Corporation Cottrell Science Award</fundingAgency>
<fundingNumber>CC6624</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The perturbation of the racemic equilibrium of luminescent D
<sub>3</sub>
terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6‐pyridine‐dicarboxylic acid (DPA), by added chiral biomolecules such as
<sc>L</sc>
‐amino acids has been studied using circularly polarized luminescence and
<sup>13</sup>
C NMR spectroscopy. It is shown in this work that the chiral‐induced equilibrium shift of [Tb(CDA)
<sub>3</sub>
]
<sup>6−</sup>
by
<sc>L</sc>
‐amino acids (i.e.
<sc>L</sc>
‐proline or
<sc>L</sc>
‐arginine) was largely influenced by the hydrogen‐bonding networks formed between the ligand interface of racemic [Tb(CDA)
<sub>3</sub>
]
<sup>6−</sup>
and these added chiral agents. The capping of potential hydrogen‐bonding sites by acetylation in
<sc>L</sc>
‐proline led to a ∼100‐fold drop in the induced optical activity of the [Tb(CDA)
<sub>3</sub>
]
<sup>6−</sup>
:
<i>N</i>
‐acetyl‐
<sc>L</sc>
‐proline system. This result suggested that the hydrogen‐bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)
<sub>3</sub>
]
<sup>6−</sup>
and added
<sc>L</sc>
‐amino acids. Chirality, 2009. © 2008 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Chiral Recognition of Amino Acids Using CPL</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Moussa</namePart>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Pham</namePart>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shruthi</namePart>
<namePart type="family">Bommireddy</namePart>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gilles</namePart>
<namePart type="family">Muller</namePart>
<affiliation>Department of Chemistry, San José State University, One Washington Square, San José, California</affiliation>
<affiliation>E-mail: gilles.muller@sjsu.edu</affiliation>
<affiliation>Correspondence address: Department of Chemistry, San José State University, One Washington Square, San José, CA 95192‐0101</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-05</dateIssued>
<dateCaptured encoding="w3cdtf">2008-02-28</dateCaptured>
<dateValid encoding="w3cdtf">2008-05-28</dateValid>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">4</extent>
<extent unit="tables">3</extent>
<extent unit="references">55</extent>
<extent unit="words">1177</extent>
</physicalDescription>
<abstract lang="en">The perturbation of the racemic equilibrium of luminescent D3 terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6‐pyridine‐dicarboxylic acid (DPA), by added chiral biomolecules such as L‐amino acids has been studied using circularly polarized luminescence and 13C NMR spectroscopy. It is shown in this work that the chiral‐induced equilibrium shift of [Tb(CDA)3]6− by L‐amino acids (i.e. L‐proline or L‐arginine) was largely influenced by the hydrogen‐bonding networks formed between the ligand interface of racemic [Tb(CDA)3]6− and these added chiral agents. The capping of potential hydrogen‐bonding sites by acetylation in L‐proline led to a ∼100‐fold drop in the induced optical activity of the [Tb(CDA)3]6−:N‐acetyl‐L‐proline system. This result suggested that the hydrogen‐bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)3]6− and added L‐amino acids. Chirality, 2009. © 2008 Wiley‐Liss, Inc.</abstract>
<note type="funding">National Institute of Health Minority Biomedical Research Support - No. 2 S06 GM008192‐24A1; </note>
<note type="funding">Research Corporation Cottrell Science Award - No. CC6624; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>circularly polarized luminescence</topic>
<topic>lanthanide</topic>
<topic>chirality</topic>
<topic>amino acid</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Chirality</title>
<subTitle>The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Chirality</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Regular Article</topic>
</subject>
<identifier type="ISSN">0899-0042</identifier>
<identifier type="eISSN">1520-636X</identifier>
<identifier type="DOI">10.1002/(ISSN)1520-636X</identifier>
<identifier type="PublisherID">CHIR</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>497</start>
<end>506</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0E84689966BCA756674BA0BDCF53826BC9F114B0</identifier>
<identifier type="ark">ark:/67375/WNG-4D4FFG2K-M</identifier>
<identifier type="DOI">10.1002/chir.20628</identifier>
<identifier type="ArticleID">CHIR20628</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2008 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/0E84689966BCA756674BA0BDCF53826BC9F114B0/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000305 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000305 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0E84689966BCA756674BA0BDCF53826BC9F114B0
   |texte=   Importance of hydrogen‐bonding sites in the chiral recognition mechanism between racemic D3 terbium(III) complexes and amino acids
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024