Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS

Identifieur interne : 000088 ( Hal/Checkpoint ); précédent : 000087; suivant : 000089

LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS

Auteurs : C. J Rgensen

Source :

RBID : Hal:jpa-00226922

Abstract

Fluoride glasses of the zirconium barium lanthanide type (invented Rennes, 1975) and lead gallium zinc (or manganese) type (invented Le Mans, 1979) show luminescence of lanthanide J-Levels situated at least 2000 cm-1 above the closest lower level (this limit is a few times larger in most other materials). Not only is the non-radiative de-excitation as weak as incrystalline LaF3 (studied by Weber) but energy transfer between neodymium and ytterbium (III), or from manganese (II), and to some extent from chromium (III), to luminescent J-levels of neodymium (III), erbium(III) and thulium (III) is highly efficient even at low concentrations. One advantage for laser applications is that the lowest quartet state of manganese (II) has a life-time 10 to 15 milliseconds (like in many phosphate glasses and crystalline compounds) allowing energy transfer, extending by huge factors the average life-time of the emitting J-levels. Though the terawatt lasers (Livermore, California, 1978) inducing deuterium-tritium fusion are silicate glass containing neodymium (III), fluoride glasses should be preferable for many purposes. The evaluation of laser parameters from small-scale experimentation is feasible.

Url:
DOI: 10.1051/jphyscol:19877106

Links toward previous steps (curation, corpus...)


Links to Exploration step

Hal:jpa-00226922

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="it">LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS</title>
<author>
<name sortKey="J Rgensen, C" sort="J Rgensen, C" uniqKey="J Rgensen C" first="C." last="J Rgensen">C. J Rgensen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:jpa-00226922</idno>
<idno type="halId">jpa-00226922</idno>
<idno type="halUri">https://hal.archives-ouvertes.fr/jpa-00226922</idno>
<idno type="url">https://hal.archives-ouvertes.fr/jpa-00226922</idno>
<idno type="doi">10.1051/jphyscol:19877106</idno>
<date when="1987">1987</date>
<idno type="wicri:Area/Hal/Corpus">000123</idno>
<idno type="wicri:Area/Hal/Curation">000123</idno>
<idno type="wicri:Area/Hal/Checkpoint">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000088</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="it">LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS</title>
<author>
<name sortKey="J Rgensen, C" sort="J Rgensen, C" uniqKey="J Rgensen C" first="C." last="J Rgensen">C. J Rgensen</name>
</author>
</analytic>
<idno type="DOI">10.1051/jphyscol:19877106</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fluoride glasses of the zirconium barium lanthanide type (invented Rennes, 1975) and lead gallium zinc (or manganese) type (invented Le Mans, 1979) show luminescence of lanthanide J-Levels situated at least 2000 cm-1 above the closest lower level (this limit is a few times larger in most other materials). Not only is the non-radiative de-excitation as weak as incrystalline LaF3 (studied by Weber) but energy transfer between neodymium and ytterbium (III), or from manganese (II), and to some extent from chromium (III), to luminescent J-levels of neodymium (III), erbium(III) and thulium (III) is highly efficient even at low concentrations. One advantage for laser applications is that the lowest quartet state of manganese (II) has a life-time 10 to 15 milliseconds (like in many phosphate glasses and crystalline compounds) allowing energy transfer, extending by huge factors the average life-time of the emitting J-levels. Though the terawatt lasers (Livermore, California, 1978) inducing deuterium-tritium fusion are silicate glass containing neodymium (III), fluoride glasses should be preferable for many purposes. The evaluation of laser parameters from small-scale experimentation is feasible.</div>
</front>
</TEI>
<hal api="V3">
<titleStmt>
<title xml:lang="it">LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS</title>
<author role="aut">
<persName>
<forename type="first">C.</forename>
<surname>Jørgensen</surname>
</persName>
<email></email>
<idno type="halauthor">250886</idno>
</author>
<editor role="depositor">
<persName>
<forename>Archives</forename>
<surname>Journal de Physique</surname>
</persName>
<email>ccsd-tech@ccsd.cnrs.fr</email>
</editor>
</titleStmt>
<editionStmt>
<edition n="v1" type="current">
<date type="whenSubmitted">1987-01-01 08:00:00</date>
<date type="whenWritten">1987</date>
<date type="whenModified">1987-01-01 08:00:00</date>
<date type="whenReleased">1987-01-01 08:00:00</date>
<date type="whenProduced">1987</date>
<date type="whenEndEmbargoed">1987-01-01</date>
<ref type="file" target="https://hal.archives-ouvertes.fr/jpa-00226922/document">
<date notBefore="1987-01-01"></date>
</ref>
<ref type="file" subtype="publisherAgreement" n="1" target="https://hal.archives-ouvertes.fr/jpa-00226922/file/ajp-jphyscol198748C7106.pdf">
<date notBefore="1987-01-01"></date>
</ref>
</edition>
<respStmt>
<resp>contributor</resp>
<name key="122646">
<persName>
<forename>Archives</forename>
<surname>Journal de Physique</surname>
</persName>
<email>ccsd-tech@ccsd.cnrs.fr</email>
</name>
</respStmt>
</editionStmt>
<publicationStmt>
<distributor>CCSD</distributor>
<idno type="halId">jpa-00226922</idno>
<idno type="halUri">https://hal.archives-ouvertes.fr/jpa-00226922</idno>
<idno type="halBibtex">jorgensen:jpa-00226922</idno>
<idno type="halRefHtml">Journal de Physique Colloques, 1987, 48 (C7), pp.C7-447-C7-450. <10.1051/jphyscol:19877106></idno>
<idno type="halRef">Journal de Physique Colloques, 1987, 48 (C7), pp.C7-447-C7-450. <10.1051/jphyscol:19877106></idno>
</publicationStmt>
<seriesStmt>
<idno type="stamp" n="AJP">Archive du Journal de Physique</idno>
</seriesStmt>
<notesStmt>
<note type="audience" n="1">Not set</note>
<note type="popular" n="0">No</note>
<note type="peer" n="1">Yes</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="it">LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS</title>
<author role="aut">
<persName>
<forename type="first">C.</forename>
<surname>Jørgensen</surname>
</persName>
<idno type="halAuthorId">250886</idno>
</author>
</analytic>
<monogr>
<idno type="halJournalId" status="INCOMING">47437</idno>
<title level="j">Journal de Physique Colloques</title>
<imprint>
<biblScope unit="volume">48</biblScope>
<biblScope unit="issue">C7</biblScope>
<biblScope unit="pp">C7-447-C7-450</biblScope>
<date type="datePub">1987</date>
</imprint>
</monogr>
<idno type="doi">10.1051/jphyscol:19877106</idno>
</biblStruct>
</sourceDesc>
<profileDesc>
<langUsage>
<language ident="en">English</language>
</langUsage>
<textClass>
<classCode scheme="halDomain" n="phys.hist">Physics [physics]/Physics archives</classCode>
<classCode scheme="halTypology" n="ART">Journal articles</classCode>
</textClass>
<abstract xml:lang="en">Fluoride glasses of the zirconium barium lanthanide type (invented Rennes, 1975) and lead gallium zinc (or manganese) type (invented Le Mans, 1979) show luminescence of lanthanide J-Levels situated at least 2000 cm-1 above the closest lower level (this limit is a few times larger in most other materials). Not only is the non-radiative de-excitation as weak as incrystalline LaF3 (studied by Weber) but energy transfer between neodymium and ytterbium (III), or from manganese (II), and to some extent from chromium (III), to luminescent J-levels of neodymium (III), erbium(III) and thulium (III) is highly efficient even at low concentrations. One advantage for laser applications is that the lowest quartet state of manganese (II) has a life-time 10 to 15 milliseconds (like in many phosphate glasses and crystalline compounds) allowing energy transfer, extending by huge factors the average life-time of the emitting J-levels. Though the terawatt lasers (Livermore, California, 1978) inducing deuterium-tritium fusion are silicate glass containing neodymium (III), fluoride glasses should be preferable for many purposes. The evaluation of laser parameters from small-scale experimentation is feasible.</abstract>
</profileDesc>
</hal>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Hal/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Hal/Checkpoint/biblio.hfd -nk 000088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Hal
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Hal:jpa-00226922
   |texte=   LUMINESCENCE IN POTENTIAL FLUORIDE GLASS LASERS
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024