Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanocharacterization and bactericidal performance of silver modified titania photocatalyst.

Identifieur interne : 000B15 ( Main/Corpus ); précédent : 000B14; suivant : 000B16

Nanocharacterization and bactericidal performance of silver modified titania photocatalyst.

Auteurs : Xubin Pan ; Iliana Medina-Ramirez ; Ray Mernaugh ; Jingbo Liu

Source :

RBID : pubmed:20153152

English descriptors

Abstract

An environmental-friendly procedure for manufacturing silver (Ag) and titania (TiO(2)) nanocomposites in an aqueous solution is presented. This green synthetic approach results in the successful production of nanomaterials with high dispersion and crystallinity. The colloidal suspensions of the nanocomposites composed of metal and ceramic (Ag-TiO(2)) were found to be extremely stable over a prolonged time period. Morphologically, nanocomposites were found to be composed of near-spherical particles that were highly crystalline. The nanocomposites were mono-dispersed with particles varying in size from 20 to 50nm, depending upon nanocomposite solution pH. Indexed metallic nanoscale silver exhibited a face-centered cubic (fcc) crystalline phase structure. Nanocomposite elemental composition studies indicated that the molar ratio of Ag and Ti was approximately 1-20. The binding energies and energy differences of Ag, Ti and O were well-indexed with their associated standard spectra. Nanocomposite optical absorption properties were consistent with noble metal nanoparticles. The zetapotential for the nanocomposites was higher at acidic pH and exhibited an absolute negative charge that apparently inhibited particle agglomeration. Escherichia coli (E. coli), a Gram-negative model microorganism was effectively inactivated using the nanocomposites under visible light at ambient temperature and pressure. The 'green chemistry' derived Ag-TiO(2) composites are applicable for the removal of biological impurities from drinking and underground water supplies. The results of the study indicated that nanocomposites could be specifically designed to prevent growth of bacteria in water.

DOI: 10.1016/j.colsurfb.2010.01.010
PubMed: 20153152

Links to Exploration step

pubmed:20153152

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanocharacterization and bactericidal performance of silver modified titania photocatalyst.</title>
<author>
<name sortKey="Pan, Xubin" sort="Pan, Xubin" uniqKey="Pan X" first="Xubin" last="Pan">Xubin Pan</name>
<affiliation>
<nlm:affiliation>Texas A&M University-Kingsville, 78363, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Medina Ramirez, Iliana" sort="Medina Ramirez, Iliana" uniqKey="Medina Ramirez I" first="Iliana" last="Medina-Ramirez">Iliana Medina-Ramirez</name>
</author>
<author>
<name sortKey="Mernaugh, Ray" sort="Mernaugh, Ray" uniqKey="Mernaugh R" first="Ray" last="Mernaugh">Ray Mernaugh</name>
</author>
<author>
<name sortKey="Liu, Jingbo" sort="Liu, Jingbo" uniqKey="Liu J" first="Jingbo" last="Liu">Jingbo Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20153152</idno>
<idno type="pmid">20153152</idno>
<idno type="doi">10.1016/j.colsurfb.2010.01.010</idno>
<idno type="wicri:Area/Main/Corpus">000B15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nanocharacterization and bactericidal performance of silver modified titania photocatalyst.</title>
<author>
<name sortKey="Pan, Xubin" sort="Pan, Xubin" uniqKey="Pan X" first="Xubin" last="Pan">Xubin Pan</name>
<affiliation>
<nlm:affiliation>Texas A&M University-Kingsville, 78363, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Medina Ramirez, Iliana" sort="Medina Ramirez, Iliana" uniqKey="Medina Ramirez I" first="Iliana" last="Medina-Ramirez">Iliana Medina-Ramirez</name>
</author>
<author>
<name sortKey="Mernaugh, Ray" sort="Mernaugh, Ray" uniqKey="Mernaugh R" first="Ray" last="Mernaugh">Ray Mernaugh</name>
</author>
<author>
<name sortKey="Liu, Jingbo" sort="Liu, Jingbo" uniqKey="Liu J" first="Jingbo" last="Liu">Jingbo Liu</name>
</author>
</analytic>
<series>
<title level="j">Colloids and surfaces. B, Biointerfaces</title>
<idno type="eISSN">1873-4367</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Catalysis (MeSH)</term>
<term>Escherichia coli (drug effects)</term>
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Nanotechnology (MeSH)</term>
<term>Photochemistry (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Spectrum Analysis (methods)</term>
<term>Titanium (chemistry)</term>
<term>Titanium (pharmacology)</term>
<term>X-Rays (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Spectrum Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Microscopy, Electron, Scanning</term>
<term>Microscopy, Electron, Transmission</term>
<term>Nanotechnology</term>
<term>Photochemistry</term>
<term>X-Rays</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An environmental-friendly procedure for manufacturing silver (Ag) and titania (TiO(2)) nanocomposites in an aqueous solution is presented. This green synthetic approach results in the successful production of nanomaterials with high dispersion and crystallinity. The colloidal suspensions of the nanocomposites composed of metal and ceramic (Ag-TiO(2)) were found to be extremely stable over a prolonged time period. Morphologically, nanocomposites were found to be composed of near-spherical particles that were highly crystalline. The nanocomposites were mono-dispersed with particles varying in size from 20 to 50nm, depending upon nanocomposite solution pH. Indexed metallic nanoscale silver exhibited a face-centered cubic (fcc) crystalline phase structure. Nanocomposite elemental composition studies indicated that the molar ratio of Ag and Ti was approximately 1-20. The binding energies and energy differences of Ag, Ti and O were well-indexed with their associated standard spectra. Nanocomposite optical absorption properties were consistent with noble metal nanoparticles. The zetapotential for the nanocomposites was higher at acidic pH and exhibited an absolute negative charge that apparently inhibited particle agglomeration. Escherichia coli (E. coli), a Gram-negative model microorganism was effectively inactivated using the nanocomposites under visible light at ambient temperature and pressure. The 'green chemistry' derived Ag-TiO(2) composites are applicable for the removal of biological impurities from drinking and underground water supplies. The results of the study indicated that nanocomposites could be specifically designed to prevent growth of bacteria in water.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20153152</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4367</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>77</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Colloids and surfaces. B, Biointerfaces</Title>
<ISOAbbreviation>Colloids Surf B Biointerfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Nanocharacterization and bactericidal performance of silver modified titania photocatalyst.</ArticleTitle>
<Pagination>
<MedlinePgn>82-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.colsurfb.2010.01.010</ELocationID>
<Abstract>
<AbstractText>An environmental-friendly procedure for manufacturing silver (Ag) and titania (TiO(2)) nanocomposites in an aqueous solution is presented. This green synthetic approach results in the successful production of nanomaterials with high dispersion and crystallinity. The colloidal suspensions of the nanocomposites composed of metal and ceramic (Ag-TiO(2)) were found to be extremely stable over a prolonged time period. Morphologically, nanocomposites were found to be composed of near-spherical particles that were highly crystalline. The nanocomposites were mono-dispersed with particles varying in size from 20 to 50nm, depending upon nanocomposite solution pH. Indexed metallic nanoscale silver exhibited a face-centered cubic (fcc) crystalline phase structure. Nanocomposite elemental composition studies indicated that the molar ratio of Ag and Ti was approximately 1-20. The binding energies and energy differences of Ag, Ti and O were well-indexed with their associated standard spectra. Nanocomposite optical absorption properties were consistent with noble metal nanoparticles. The zetapotential for the nanocomposites was higher at acidic pH and exhibited an absolute negative charge that apparently inhibited particle agglomeration. Escherichia coli (E. coli), a Gram-negative model microorganism was effectively inactivated using the nanocomposites under visible light at ambient temperature and pressure. The 'green chemistry' derived Ag-TiO(2) composites are applicable for the removal of biological impurities from drinking and underground water supplies. The results of the study indicated that nanocomposites could be specifically designed to prevent growth of bacteria in water.</AbstractText>
<CopyrightInformation>2010 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Xubin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Texas A&M University-Kingsville, 78363, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Medina-Ramirez</LastName>
<ForeName>Iliana</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mernaugh</LastName>
<ForeName>Ray</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jingbo</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Colloids Surf B Biointerfaces</MedlineTA>
<NlmUniqueID>9315133</NlmUniqueID>
<ISSNLinking>0927-7765</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036103" MajorTopicYN="Y">Nanotechnology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010777" MajorTopicYN="N">Photochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013057" MajorTopicYN="N">Spectrum Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014965" MajorTopicYN="N">X-Rays</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>12</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20153152</ArticleId>
<ArticleId IdType="pii">S0927-7765(10)00038-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.colsurfb.2010.01.010</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20153152
   |texte=   Nanocharacterization and bactericidal performance of silver modified titania photocatalyst.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20153152" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021