Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.

Identifieur interne : 000A13 ( Main/Corpus ); précédent : 000A12; suivant : 000A14

Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.

Auteurs : Mohammad Atif Faiz Afzal ; Sushma Kalmodia ; Pallavi Kesarwani ; Bikramjit Basu ; Kantesh Balani

Source :

RBID : pubmed:22286208

English descriptors

Abstract

Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by ~15%) and elastic modulus (~5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by ~65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.

DOI: 10.1177/0885328211431856
PubMed: 22286208

Links to Exploration step

pubmed:22286208

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.</title>
<author>
<name sortKey="Afzal, Mohammad Atif Faiz" sort="Afzal, Mohammad Atif Faiz" uniqKey="Afzal M" first="Mohammad Atif Faiz" last="Afzal">Mohammad Atif Faiz Afzal</name>
<affiliation>
<nlm:affiliation>Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kalmodia, Sushma" sort="Kalmodia, Sushma" uniqKey="Kalmodia S" first="Sushma" last="Kalmodia">Sushma Kalmodia</name>
</author>
<author>
<name sortKey="Kesarwani, Pallavi" sort="Kesarwani, Pallavi" uniqKey="Kesarwani P" first="Pallavi" last="Kesarwani">Pallavi Kesarwani</name>
</author>
<author>
<name sortKey="Basu, Bikramjit" sort="Basu, Bikramjit" uniqKey="Basu B" first="Bikramjit" last="Basu">Bikramjit Basu</name>
</author>
<author>
<name sortKey="Balani, Kantesh" sort="Balani, Kantesh" uniqKey="Balani K" first="Kantesh" last="Balani">Kantesh Balani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:22286208</idno>
<idno type="pmid">22286208</idno>
<idno type="doi">10.1177/0885328211431856</idno>
<idno type="wicri:Area/Main/Corpus">000A13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.</title>
<author>
<name sortKey="Afzal, Mohammad Atif Faiz" sort="Afzal, Mohammad Atif Faiz" uniqKey="Afzal M" first="Mohammad Atif Faiz" last="Afzal">Mohammad Atif Faiz Afzal</name>
<affiliation>
<nlm:affiliation>Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kalmodia, Sushma" sort="Kalmodia, Sushma" uniqKey="Kalmodia S" first="Sushma" last="Kalmodia">Sushma Kalmodia</name>
</author>
<author>
<name sortKey="Kesarwani, Pallavi" sort="Kesarwani, Pallavi" uniqKey="Kesarwani P" first="Pallavi" last="Kesarwani">Pallavi Kesarwani</name>
</author>
<author>
<name sortKey="Basu, Bikramjit" sort="Basu, Bikramjit" uniqKey="Basu B" first="Bikramjit" last="Basu">Bikramjit Basu</name>
</author>
<author>
<name sortKey="Balani, Kantesh" sort="Balani, Kantesh" uniqKey="Balani K" first="Kantesh" last="Balani">Kantesh Balani</name>
</author>
</analytic>
<series>
<title level="j">Journal of biomaterials applications</title>
<idno type="eISSN">1530-8022</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Bacterial Adhesion (MeSH)</term>
<term>Biocompatible Materials (chemistry)</term>
<term>Bone Substitutes (chemistry)</term>
<term>Elastic Modulus (MeSH)</term>
<term>Hardness (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydroxyapatites (chemistry)</term>
<term>Materials Testing (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal Nanoparticles (ultrastructure)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Nanocomposites (chemistry)</term>
<term>Nanocomposites (ultrastructure)</term>
<term>Nanotubes, Carbon (chemistry)</term>
<term>Nanotubes, Carbon (ultrastructure)</term>
<term>Prosthesis-Related Infections (prevention & control)</term>
<term>Silver (MeSH)</term>
<term>Spectrum Analysis, Raman (MeSH)</term>
<term>X-Ray Diffraction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Biocompatible Materials</term>
<term>Bone Substitutes</term>
<term>Hydroxyapatites</term>
<term>Nanotubes, Carbon</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanocomposites</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Prosthesis-Related Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanocomposites</term>
<term>Nanotubes, Carbon</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacterial Adhesion</term>
<term>Elastic Modulus</term>
<term>Hardness</term>
<term>Humans</term>
<term>Materials Testing</term>
<term>Microbial Sensitivity Tests</term>
<term>Microscopy, Electron, Scanning</term>
<term>Silver</term>
<term>Spectrum Analysis, Raman</term>
<term>X-Ray Diffraction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by ~15%) and elastic modulus (~5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by ~65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22286208</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-8022</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biomaterials applications</Title>
<ISOAbbreviation>J Biomater Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.</ArticleTitle>
<Pagination>
<MedlinePgn>967-78</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1177/0885328211431856</ELocationID>
<Abstract>
<AbstractText>Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by ~15%) and elastic modulus (~5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by ~65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Afzal</LastName>
<ForeName>Mohammad Atif Faiz</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Biomaterials Processing and Characterization Laboratory, Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kalmodia</LastName>
<ForeName>Sushma</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kesarwani</LastName>
<ForeName>Pallavi</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Basu</LastName>
<ForeName>Bikramjit</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balani</LastName>
<ForeName>Kantesh</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Biomater Appl</MedlineTA>
<NlmUniqueID>8813912</NlmUniqueID>
<ISSNLinking>0885-3282</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001672">Biocompatible Materials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018786">Bone Substitutes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006882">Hydroxyapatites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037742">Nanotubes, Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001422" MajorTopicYN="N">Bacterial Adhesion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001672" MajorTopicYN="N">Biocompatible Materials</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018786" MajorTopicYN="N">Bone Substitutes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055119" MajorTopicYN="N">Elastic Modulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006244" MajorTopicYN="N">Hardness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006882" MajorTopicYN="N">Hydroxyapatites</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008422" MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053761" MajorTopicYN="N">Nanocomposites</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037742" MajorTopicYN="N">Nanotubes, Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016459" MajorTopicYN="N">Prosthesis-Related Infections</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="Y">Silver</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013059" MajorTopicYN="N">Spectrum Analysis, Raman</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antibacterial</Keyword>
<Keyword MajorTopicYN="N">biocomposite</Keyword>
<Keyword MajorTopicYN="N">carbon nanotubes</Keyword>
<Keyword MajorTopicYN="N">hydroxyapatite</Keyword>
<Keyword MajorTopicYN="N">nanoindentation</Keyword>
<Keyword MajorTopicYN="N">silver</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22286208</ArticleId>
<ArticleId IdType="pii">0885328211431856</ArticleId>
<ArticleId IdType="doi">10.1177/0885328211431856</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000A13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22286208
   |texte=   Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22286208" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021