Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Silver nanoparticle-specific mitotoxicity in Daphnia magna.

Identifieur interne : 000907 ( Main/Corpus ); précédent : 000906; suivant : 000908

Silver nanoparticle-specific mitotoxicity in Daphnia magna.

Auteurs : Matthew C. Stensberg ; Rajtarun Madangopal ; Gowri Yale ; Qingshan Wei ; Hugo Ochoa-Acu A ; Alexander Wei ; Eric S. Mclamore ; Jenna Rickus ; D Marshall Porterfield ; Maria S. Sepúlveda

Source :

RBID : pubmed:23927462

English descriptors

Abstract

Silver nanoparticles (Ag NPs) are gaining popularity as bactericidal agents in commercial products; however, the mechanisms of toxicity (MOT) of Ag NPs to other organisms are not fully understood. It is the goal of this research to determine differences in MOT induced by ionic Ag(+) and Ag NPs in Daphnia magna, by incorporating a battery of traditional and novel methods. Daphnia embryos were exposed to sublethal concentrations of AgNO3 and Ag NPs (130-650 ng/L), with uptake of the latter confirmed by confocal reflectance microscopy. Mitochondrial function was non-invasively monitored by measuring proton flux using self-referencing microsensors. Proton flux measurements revealed that while both forms of silver significantly affected proton efflux, the change induced by Ag NPs was greater than that of Ag(+). This could be correlated with the effects of Ag NPs on mitochondrial dysfunction, as determined by confocal fluorescence microscopy and JC-1, an indicator of mitochondrial permeability. However, Ag(+) was more efficient than Ag NPs at displacing Na(+) within embryonic Daphnia, based on inductively coupled plasma-mass spectroscopy (ICP-MS) analysis. The abnormalities in mitochondrial activity for Ag NP-exposed organisms suggest a nanoparticle-specific MOT, distinct from that induced by Ag ions. We propose that the MOT of each form of silver are complementary, and can act in synergy to produce a greater toxic response overall.

DOI: 10.3109/17435390.2013.832430
PubMed: 23927462

Links to Exploration step

pubmed:23927462

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Silver nanoparticle-specific mitotoxicity in Daphnia magna.</title>
<author>
<name sortKey="Stensberg, Matthew C" sort="Stensberg, Matthew C" uniqKey="Stensberg M" first="Matthew C" last="Stensberg">Matthew C. Stensberg</name>
<affiliation>
<nlm:affiliation>Department of Agriculture and Biological Engineering, Purdue University , West Lafayette, IN , USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madangopal, Rajtarun" sort="Madangopal, Rajtarun" uniqKey="Madangopal R" first="Rajtarun" last="Madangopal">Rajtarun Madangopal</name>
</author>
<author>
<name sortKey="Yale, Gowri" sort="Yale, Gowri" uniqKey="Yale G" first="Gowri" last="Yale">Gowri Yale</name>
</author>
<author>
<name sortKey="Wei, Qingshan" sort="Wei, Qingshan" uniqKey="Wei Q" first="Qingshan" last="Wei">Qingshan Wei</name>
</author>
<author>
<name sortKey="Ochoa Acu A, Hugo" sort="Ochoa Acu A, Hugo" uniqKey="Ochoa Acu A H" first="Hugo" last="Ochoa-Acu A">Hugo Ochoa-Acu A</name>
</author>
<author>
<name sortKey="Wei, Alexander" sort="Wei, Alexander" uniqKey="Wei A" first="Alexander" last="Wei">Alexander Wei</name>
</author>
<author>
<name sortKey="Mclamore, Eric S" sort="Mclamore, Eric S" uniqKey="Mclamore E" first="Eric S" last="Mclamore">Eric S. Mclamore</name>
</author>
<author>
<name sortKey="Rickus, Jenna" sort="Rickus, Jenna" uniqKey="Rickus J" first="Jenna" last="Rickus">Jenna Rickus</name>
</author>
<author>
<name sortKey="Porterfield, D Marshall" sort="Porterfield, D Marshall" uniqKey="Porterfield D" first="D Marshall" last="Porterfield">D Marshall Porterfield</name>
</author>
<author>
<name sortKey="Sepulveda, Maria S" sort="Sepulveda, Maria S" uniqKey="Sepulveda M" first="Maria S" last="Sepúlveda">Maria S. Sepúlveda</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:23927462</idno>
<idno type="pmid">23927462</idno>
<idno type="doi">10.3109/17435390.2013.832430</idno>
<idno type="wicri:Area/Main/Corpus">000907</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000907</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Silver nanoparticle-specific mitotoxicity in Daphnia magna.</title>
<author>
<name sortKey="Stensberg, Matthew C" sort="Stensberg, Matthew C" uniqKey="Stensberg M" first="Matthew C" last="Stensberg">Matthew C. Stensberg</name>
<affiliation>
<nlm:affiliation>Department of Agriculture and Biological Engineering, Purdue University , West Lafayette, IN , USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madangopal, Rajtarun" sort="Madangopal, Rajtarun" uniqKey="Madangopal R" first="Rajtarun" last="Madangopal">Rajtarun Madangopal</name>
</author>
<author>
<name sortKey="Yale, Gowri" sort="Yale, Gowri" uniqKey="Yale G" first="Gowri" last="Yale">Gowri Yale</name>
</author>
<author>
<name sortKey="Wei, Qingshan" sort="Wei, Qingshan" uniqKey="Wei Q" first="Qingshan" last="Wei">Qingshan Wei</name>
</author>
<author>
<name sortKey="Ochoa Acu A, Hugo" sort="Ochoa Acu A, Hugo" uniqKey="Ochoa Acu A H" first="Hugo" last="Ochoa-Acu A">Hugo Ochoa-Acu A</name>
</author>
<author>
<name sortKey="Wei, Alexander" sort="Wei, Alexander" uniqKey="Wei A" first="Alexander" last="Wei">Alexander Wei</name>
</author>
<author>
<name sortKey="Mclamore, Eric S" sort="Mclamore, Eric S" uniqKey="Mclamore E" first="Eric S" last="Mclamore">Eric S. Mclamore</name>
</author>
<author>
<name sortKey="Rickus, Jenna" sort="Rickus, Jenna" uniqKey="Rickus J" first="Jenna" last="Rickus">Jenna Rickus</name>
</author>
<author>
<name sortKey="Porterfield, D Marshall" sort="Porterfield, D Marshall" uniqKey="Porterfield D" first="D Marshall" last="Porterfield">D Marshall Porterfield</name>
</author>
<author>
<name sortKey="Sepulveda, Maria S" sort="Sepulveda, Maria S" uniqKey="Sepulveda M" first="Maria S" last="Sepúlveda">Maria S. Sepúlveda</name>
</author>
</analytic>
<series>
<title level="j">Nanotoxicology</title>
<idno type="eISSN">1743-5404</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Daphnia (chemistry)</term>
<term>Daphnia (drug effects)</term>
<term>Daphnia (metabolism)</term>
<term>Lethal Dose 50 (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal Nanoparticles (toxicity)</term>
<term>Mitochondrial Membranes (drug effects)</term>
<term>Permeability (drug effects)</term>
<term>Protons (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacokinetics)</term>
<term>Silver (toxicity)</term>
<term>Sodium (metabolism)</term>
<term>Toxicity Tests (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Protons</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Daphnia</term>
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Daphnia</term>
<term>Mitochondrial Membranes</term>
<term>Permeability</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Daphnia</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Lethal Dose 50</term>
<term>Toxicity Tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silver nanoparticles (Ag NPs) are gaining popularity as bactericidal agents in commercial products; however, the mechanisms of toxicity (MOT) of Ag NPs to other organisms are not fully understood. It is the goal of this research to determine differences in MOT induced by ionic Ag(+) and Ag NPs in Daphnia magna, by incorporating a battery of traditional and novel methods. Daphnia embryos were exposed to sublethal concentrations of AgNO3 and Ag NPs (130-650 ng/L), with uptake of the latter confirmed by confocal reflectance microscopy. Mitochondrial function was non-invasively monitored by measuring proton flux using self-referencing microsensors. Proton flux measurements revealed that while both forms of silver significantly affected proton efflux, the change induced by Ag NPs was greater than that of Ag(+). This could be correlated with the effects of Ag NPs on mitochondrial dysfunction, as determined by confocal fluorescence microscopy and JC-1, an indicator of mitochondrial permeability. However, Ag(+) was more efficient than Ag NPs at displacing Na(+) within embryonic Daphnia, based on inductively coupled plasma-mass spectroscopy (ICP-MS) analysis. The abnormalities in mitochondrial activity for Ag NP-exposed organisms suggest a nanoparticle-specific MOT, distinct from that induced by Ag ions. We propose that the MOT of each form of silver are complementary, and can act in synergy to produce a greater toxic response overall.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23927462</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-5404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Nanotoxicology</Title>
<ISOAbbreviation>Nanotoxicology</ISOAbbreviation>
</Journal>
<ArticleTitle>Silver nanoparticle-specific mitotoxicity in Daphnia magna.</ArticleTitle>
<Pagination>
<MedlinePgn>833-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3109/17435390.2013.832430</ELocationID>
<Abstract>
<AbstractText>Silver nanoparticles (Ag NPs) are gaining popularity as bactericidal agents in commercial products; however, the mechanisms of toxicity (MOT) of Ag NPs to other organisms are not fully understood. It is the goal of this research to determine differences in MOT induced by ionic Ag(+) and Ag NPs in Daphnia magna, by incorporating a battery of traditional and novel methods. Daphnia embryos were exposed to sublethal concentrations of AgNO3 and Ag NPs (130-650 ng/L), with uptake of the latter confirmed by confocal reflectance microscopy. Mitochondrial function was non-invasively monitored by measuring proton flux using self-referencing microsensors. Proton flux measurements revealed that while both forms of silver significantly affected proton efflux, the change induced by Ag NPs was greater than that of Ag(+). This could be correlated with the effects of Ag NPs on mitochondrial dysfunction, as determined by confocal fluorescence microscopy and JC-1, an indicator of mitochondrial permeability. However, Ag(+) was more efficient than Ag NPs at displacing Na(+) within embryonic Daphnia, based on inductively coupled plasma-mass spectroscopy (ICP-MS) analysis. The abnormalities in mitochondrial activity for Ag NP-exposed organisms suggest a nanoparticle-specific MOT, distinct from that induced by Ag ions. We propose that the MOT of each form of silver are complementary, and can act in synergy to produce a greater toxic response overall.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stensberg</LastName>
<ForeName>Matthew C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture and Biological Engineering, Purdue University , West Lafayette, IN , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Madangopal</LastName>
<ForeName>Rajtarun</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yale</LastName>
<ForeName>Gowri</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Qingshan</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ochoa-Acuña</LastName>
<ForeName>Hugo</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McLamore</LastName>
<ForeName>Eric S</ForeName>
<Initials>ES</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rickus</LastName>
<ForeName>Jenna</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Porterfield</LastName>
<ForeName>D Marshall</ForeName>
<Initials>DM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sepúlveda</LastName>
<ForeName>Maria S</ForeName>
<Initials>MS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotoxicology</MedlineTA>
<NlmUniqueID>101233132</NlmUniqueID>
<ISSNLinking>1743-5390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011522">Protons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003621" MajorTopicYN="N">Daphnia</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007928" MajorTopicYN="N">Lethal Dose 50</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051336" MajorTopicYN="N">Mitochondrial Membranes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010539" MajorTopicYN="N">Permeability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011522" MajorTopicYN="N">Protons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018675" MajorTopicYN="N">Toxicity Tests</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23927462</ArticleId>
<ArticleId IdType="doi">10.3109/17435390.2013.832430</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000907 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000907 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23927462
   |texte=   Silver nanoparticle-specific mitotoxicity in Daphnia magna.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23927462" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021