Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation.

Identifieur interne : 000905 ( Main/Corpus ); précédent : 000904; suivant : 000906

In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation.

Auteurs : Zheng Wang ; Yan Sun ; Dongzhou Wang ; Hong Liu ; Robert I. Boughton

Source :

RBID : pubmed:23966780

English descriptors

Abstract

A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants.

DOI: 10.2147/IJN.S45742
PubMed: 23966780
PubMed Central: PMC3743643

Links to Exploration step

pubmed:23966780

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation.</title>
<author>
<name sortKey="Wang, Zheng" sort="Wang, Zheng" uniqKey="Wang Z" first="Zheng" last="Wang">Zheng Wang</name>
<affiliation>
<nlm:affiliation>Department of Cardiology, Heilongjiang Provincial Hospital, Haerbin, Heilongjiang, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yan" sort="Sun, Yan" uniqKey="Sun Y" first="Yan" last="Sun">Yan Sun</name>
</author>
<author>
<name sortKey="Wang, Dongzhou" sort="Wang, Dongzhou" uniqKey="Wang D" first="Dongzhou" last="Wang">Dongzhou Wang</name>
</author>
<author>
<name sortKey="Liu, Hong" sort="Liu, Hong" uniqKey="Liu H" first="Hong" last="Liu">Hong Liu</name>
</author>
<author>
<name sortKey="Boughton, Robert I" sort="Boughton, Robert I" uniqKey="Boughton R" first="Robert I" last="Boughton">Robert I. Boughton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23966780</idno>
<idno type="pmid">23966780</idno>
<idno type="doi">10.2147/IJN.S45742</idno>
<idno type="pmc">PMC3743643</idno>
<idno type="wicri:Area/Main/Corpus">000905</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000905</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation.</title>
<author>
<name sortKey="Wang, Zheng" sort="Wang, Zheng" uniqKey="Wang Z" first="Zheng" last="Wang">Zheng Wang</name>
<affiliation>
<nlm:affiliation>Department of Cardiology, Heilongjiang Provincial Hospital, Haerbin, Heilongjiang, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yan" sort="Sun, Yan" uniqKey="Sun Y" first="Yan" last="Sun">Yan Sun</name>
</author>
<author>
<name sortKey="Wang, Dongzhou" sort="Wang, Dongzhou" uniqKey="Wang D" first="Dongzhou" last="Wang">Dongzhou Wang</name>
</author>
<author>
<name sortKey="Liu, Hong" sort="Liu, Hong" uniqKey="Liu H" first="Hong" last="Liu">Hong Liu</name>
</author>
<author>
<name sortKey="Boughton, Robert I" sort="Boughton, Robert I" uniqKey="Boughton R" first="Robert I" last="Boughton">Robert I. Boughton</name>
</author>
</analytic>
<series>
<title level="j">International journal of nanomedicine</title>
<idno type="eISSN">1178-2013</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkaline Phosphatase (metabolism)</term>
<term>Analysis of Variance (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Anti-Bacterial Agents (chemical synthesis)</term>
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Cell Line (MeSH)</term>
<term>Cell Proliferation (drug effects)</term>
<term>Cell Shape (drug effects)</term>
<term>Escherichia coli (drug effects)</term>
<term>Hydrogen (chemistry)</term>
<term>Materials Testing (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Nanotubes (chemistry)</term>
<term>Oxides (chemistry)</term>
<term>Prostheses and Implants (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
<term>Spectrum Analysis, Raman (MeSH)</term>
<term>Titanium (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Hydrogen</term>
<term>Oxides</term>
<term>Silver</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkaline Phosphatase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanotubes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Proliferation</term>
<term>Cell Shape</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Materials Testing</term>
<term>Microscopy, Fluorescence</term>
<term>Prostheses and Implants</term>
<term>Spectrum Analysis, Raman</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23966780</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1178-2013</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>International journal of nanomedicine</Title>
<ISOAbbreviation>Int J Nanomedicine</ISOAbbreviation>
</Journal>
<ArticleTitle>In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation.</ArticleTitle>
<Pagination>
<MedlinePgn>2903-16</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2147/IJN.S45742</ELocationID>
<Abstract>
<AbstractText>A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zheng</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Cardiology, Heilongjiang Provincial Hospital, Haerbin, Heilongjiang, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Dongzhou</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boughton</LastName>
<ForeName>Robert I</ForeName>
<Initials>RI</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>New Zealand</Country>
<MedlineTA>Int J Nanomedicine</MedlineTA>
<NlmUniqueID>101263847</NlmUniqueID>
<ISSNLinking>1176-9114</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>12034-34-3</RegistryNumber>
<NameOfSubstance UI="C471701">sodium titanate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.1</RegistryNumber>
<NameOfSubstance UI="D000469">Alkaline Phosphatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000469" MajorTopicYN="N">Alkaline Phosphatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="Y">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048430" MajorTopicYN="N">Cell Shape</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008422" MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043942" MajorTopicYN="N">Nanotubes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010087" MajorTopicYN="N">Oxides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019736" MajorTopicYN="N">Prostheses and Implants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013059" MajorTopicYN="N">Spectrum Analysis, Raman</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bacteriostasis</Keyword>
<Keyword MajorTopicYN="N">cytocompatibility</Keyword>
<Keyword MajorTopicYN="N">ion substitution</Keyword>
<Keyword MajorTopicYN="N">silver nanoparticle filling</Keyword>
<Keyword MajorTopicYN="N">titanium implant</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23966780</ArticleId>
<ArticleId IdType="doi">10.2147/IJN.S45742</ArticleId>
<ArticleId IdType="pii">ijn-8-2903</ArticleId>
<ArticleId IdType="pmc">PMC3743643</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Nov-Dec;2(6):670-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20730806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Calcif Tissue Int. 1982 Jan;34(1):76-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6802463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2005 Aug;26(24):4938-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):5953-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15827122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 1992 Jul;(280):200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1611745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Am. 1988 Jun;70(5):724-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3292531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2012 Jul;33(21):5267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22541354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2010;5:337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20517478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnology. 2005 Oct;16(10):2346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20818017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2008 Jun;42(12):3066-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Am. 1995 Oct;77(10):1576-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 May 24;228(4702):990-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4001933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2008 Oct 6;5(27):1137-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2009 Feb 24;3(2):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2003 May 23;9(10):2229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12772297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mater Sci Mater Med. 1999 Jan;10(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2011 May;97(2):299-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21394901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2001 Jul 14;358(9276):135-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11463434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2006 Nov;27(32):5512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16872671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2005 May;26(14):2081-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15576182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2005 Apr 7;109(13):6210-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16851687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2010 Feb;31(4):680-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2010 Nov;95(2):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20878930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Eng Online. 2006;5:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Oct 14;351(16):1645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):470-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19637369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Aug 2;128(30):9798-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Jan-Feb;27(1):76-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1986 Oct 30;315(18):1129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3531863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanosci Nanotechnol. 2007 Feb;7(2):668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17450812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infection. 1999;27 Suppl 1:S46-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10379444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2011 Jan;32(3):693-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 1999 Dec;29(6):1371-7; quiz 1378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10585781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2003 Sep;24(21):3725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12818544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000905 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000905 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23966780
   |texte=   In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23966780" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021