Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

Identifieur interne : 000724 ( Main/Corpus ); précédent : 000723; suivant : 000725

Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

Auteurs : Xuesen Hong ; Junjie Wen ; Xuhua Xiong ; Yongyou Hu

Source :

RBID : pubmed:26511259

English descriptors

Abstract

Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

DOI: 10.1007/s11356-015-5668-z
PubMed: 26511259

Links to Exploration step

pubmed:26511259

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.</title>
<author>
<name sortKey="Hong, Xuesen" sort="Hong, Xuesen" uniqKey="Hong X" first="Xuesen" last="Hong">Xuesen Hong</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. scuthxs@outlook.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. scuthxs@outlook.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wen, Junjie" sort="Wen, Junjie" uniqKey="Wen J" first="Junjie" last="Wen">Junjie Wen</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. wen.jun.jie@foxmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. wen.jun.jie@foxmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Xuhua" sort="Xiong, Xuhua" uniqKey="Xiong X" first="Xuhua" last="Xiong">Xuhua Xiong</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. 452455914@qq.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. 452455914@qq.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yongyou" sort="Hu, Yongyou" uniqKey="Hu Y" first="Yongyou" last="Hu">Yongyou Hu</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. ppyyhu@scut.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Lab of Pulp and Paper Engineering, School of Light Industry and Food Science, South China University of Technology, Guangzhou, 510640, China. ppyyhu@scut.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26511259</idno>
<idno type="pmid">26511259</idno>
<idno type="doi">10.1007/s11356-015-5668-z</idno>
<idno type="wicri:Area/Main/Corpus">000724</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000724</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.</title>
<author>
<name sortKey="Hong, Xuesen" sort="Hong, Xuesen" uniqKey="Hong X" first="Xuesen" last="Hong">Xuesen Hong</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. scuthxs@outlook.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. scuthxs@outlook.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wen, Junjie" sort="Wen, Junjie" uniqKey="Wen J" first="Junjie" last="Wen">Junjie Wen</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. wen.jun.jie@foxmail.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. wen.jun.jie@foxmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Xuhua" sort="Xiong, Xuhua" uniqKey="Xiong X" first="Xuhua" last="Xiong">Xuhua Xiong</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. 452455914@qq.com.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. 452455914@qq.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yongyou" sort="Hu, Yongyou" uniqKey="Hu Y" first="Yongyou" last="Hu">Yongyou Hu</name>
<affiliation>
<nlm:affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. ppyyhu@scut.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Lab of Pulp and Paper Engineering, School of Light Industry and Food Science, South China University of Technology, Guangzhou, 510640, China. ppyyhu@scut.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Escherichia coli (drug effects)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Microwaves (MeSH)</term>
<term>Molecular Conformation (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microbial Sensitivity Tests</term>
<term>Microwaves</term>
<term>Molecular Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">26511259</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.</ArticleTitle>
<Pagination>
<MedlinePgn>4489-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-015-5668-z</ELocationID>
<Abstract>
<AbstractText>Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hong</LastName>
<ForeName>Xuesen</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. scuthxs@outlook.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. scuthxs@outlook.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wen</LastName>
<ForeName>Junjie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. wen.jun.jie@foxmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. wen.jun.jie@foxmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Xuhua</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. 452455914@qq.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, China. 452455914@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Yongyou</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. ppyyhu@scut.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Lab of Pulp and Paper Engineering, School of Light Industry and Food Science, South China University of Technology, Guangzhou, 510640, China. ppyyhu@scut.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="Y">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008872" MajorTopicYN="Y">Microwaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antibacterial activity</Keyword>
<Keyword MajorTopicYN="N">Shape</Keyword>
<Keyword MajorTopicYN="N">Silver nanoparticles</Keyword>
<Keyword MajorTopicYN="N">Surface facet</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26511259</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-015-5668-z</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-015-5668-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nanotechnology. 2010 Jan 15;21(2):025607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2011 Dec;32(36):9810-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2013 Oct;32(10):2356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2013 Oct;6(10):1898-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24108516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2013 May 1;452-453:148-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23500408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 Dec 23;7(12):10681-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2011 Jul;40(7):4167-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21552612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2009;48(1):60-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19053095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2013 Jul;87(7):1181-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2011 Feb 25;201(1):27-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21145381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2013 Mar 19;46(3):823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2013 Feb 19;46(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Process Impacts. 2013 Jan;15(1):78-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24592429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2013 Jan 21;5(2):463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23203029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2008 Jun;42(12):3066-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2010 Sep 3;16(33):10234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20593441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2004 Jul 1;275(1):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2011 Oct 15;45(20):9003-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21950450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Mar;73(6):1712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Sep 8;132(35):12349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20707350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2005 Jan 7;11(2):454-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2009 Feb 24;3(2):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23255416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2010 Oct;29(10):2154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20872676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Jun 15;42(12):4583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18605590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Jan-Feb;27(1):76-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotoxicology. 2010 Sep;4(3):319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20795913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2003 Nov;37(18):4444-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14511715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2008 Jan;42(1-2):356-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 Mar 15;44(6):2169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20175529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2013 Jan 1;33(1):397-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428087</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000724 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000724 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26511259
   |texte=   Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26511259" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021