Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.

Identifieur interne : 000653 ( Main/Corpus ); précédent : 000652; suivant : 000654

Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.

Auteurs : S. Amin Yavari ; L. Loozen ; F L Paganelli ; S. Bakhshandeh ; K. Lietaert ; J A Groot ; A C Fluit ; C H E. Boel ; J. Alblas ; H C Vogely ; H. Weinans ; A A Zadpoor

Source :

RBID : pubmed:27300485

English descriptors

Abstract

Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make them promising candidates for combating peri-operative implant-associated infections.

DOI: 10.1021/acsami.6b03152
PubMed: 27300485

Links to Exploration step

pubmed:27300485

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.</title>
<author>
<name sortKey="Amin Yavari, S" sort="Amin Yavari, S" uniqKey="Amin Yavari S" first="S" last="Amin Yavari">S. Amin Yavari</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loozen, L" sort="Loozen, L" uniqKey="Loozen L" first="L" last="Loozen">L. Loozen</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paganelli, F L" sort="Paganelli, F L" uniqKey="Paganelli F" first="F L" last="Paganelli">F L Paganelli</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bakhshandeh, S" sort="Bakhshandeh, S" uniqKey="Bakhshandeh S" first="S" last="Bakhshandeh">S. Bakhshandeh</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lietaert, K" sort="Lietaert, K" uniqKey="Lietaert K" first="K" last="Lietaert">K. Lietaert</name>
<affiliation>
<nlm:affiliation>3D Systems-LayerWise NV, 3001 Leuven, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Materials Engineering, Katholieke Universiteit Leuven , 3000 Leuven, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Groot, J A" sort="Groot, J A" uniqKey="Groot J" first="J A" last="Groot">J A Groot</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fluit, A C" sort="Fluit, A C" uniqKey="Fluit A" first="A C" last="Fluit">A C Fluit</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boel, C H E" sort="Boel, C H E" uniqKey="Boel C" first="C H E" last="Boel">C H E. Boel</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alblas, J" sort="Alblas, J" uniqKey="Alblas J" first="J" last="Alblas">J. Alblas</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vogely, H C" sort="Vogely, H C" uniqKey="Vogely H" first="H C" last="Vogely">H C Vogely</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weinans, H" sort="Weinans, H" uniqKey="Weinans H" first="H" last="Weinans">H. Weinans</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Rheumatology, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zadpoor, A A" sort="Zadpoor, A A" uniqKey="Zadpoor A" first="A A" last="Zadpoor">A A Zadpoor</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27300485</idno>
<idno type="pmid">27300485</idno>
<idno type="doi">10.1021/acsami.6b03152</idno>
<idno type="wicri:Area/Main/Corpus">000653</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000653</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.</title>
<author>
<name sortKey="Amin Yavari, S" sort="Amin Yavari, S" uniqKey="Amin Yavari S" first="S" last="Amin Yavari">S. Amin Yavari</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loozen, L" sort="Loozen, L" uniqKey="Loozen L" first="L" last="Loozen">L. Loozen</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paganelli, F L" sort="Paganelli, F L" uniqKey="Paganelli F" first="F L" last="Paganelli">F L Paganelli</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bakhshandeh, S" sort="Bakhshandeh, S" uniqKey="Bakhshandeh S" first="S" last="Bakhshandeh">S. Bakhshandeh</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lietaert, K" sort="Lietaert, K" uniqKey="Lietaert K" first="K" last="Lietaert">K. Lietaert</name>
<affiliation>
<nlm:affiliation>3D Systems-LayerWise NV, 3001 Leuven, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Materials Engineering, Katholieke Universiteit Leuven , 3000 Leuven, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Groot, J A" sort="Groot, J A" uniqKey="Groot J" first="J A" last="Groot">J A Groot</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fluit, A C" sort="Fluit, A C" uniqKey="Fluit A" first="A C" last="Fluit">A C Fluit</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boel, C H E" sort="Boel, C H E" uniqKey="Boel C" first="C H E" last="Boel">C H E. Boel</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alblas, J" sort="Alblas, J" uniqKey="Alblas J" first="J" last="Alblas">J. Alblas</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vogely, H C" sort="Vogely, H C" uniqKey="Vogely H" first="H C" last="Vogely">H C Vogely</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weinans, H" sort="Weinans, H" uniqKey="Weinans H" first="H" last="Weinans">H. Weinans</name>
<affiliation>
<nlm:affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Rheumatology, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zadpoor, A A" sort="Zadpoor, A A" uniqKey="Zadpoor A" first="A A" last="Zadpoor">A A Zadpoor</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS applied materials & interfaces</title>
<idno type="eISSN">1944-8252</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (MeSH)</term>
<term>Ions (MeSH)</term>
<term>Porosity (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Titanium (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Ions</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Porosity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make them promising candidates for combating peri-operative implant-associated infections. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">27300485</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>27</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.</ArticleTitle>
<Pagination>
<MedlinePgn>17080-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsami.6b03152</ELocationID>
<Abstract>
<AbstractText>Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make them promising candidates for combating peri-operative implant-associated infections. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Amin Yavari</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loozen</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paganelli</LastName>
<ForeName>F L</ForeName>
<Initials>FL</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bakhshandeh</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lietaert</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>3D Systems-LayerWise NV, 3001 Leuven, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Materials Engineering, Katholieke Universiteit Leuven , 3000 Leuven, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Groot</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fluit</LastName>
<ForeName>A C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boel</LastName>
<ForeName>C H E</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Microbiology, University Medical Center Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alblas</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vogely</LastName>
<ForeName>H C</ForeName>
<Initials>HC</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weinans</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopedics, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Rheumatology, University Medical Centre Utrecht , 3584 CX Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zadpoor</LastName>
<ForeName>A A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007477">Ions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007477" MajorTopicYN="N">Ions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016062" MajorTopicYN="N">Porosity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">additive manufacturing</Keyword>
<Keyword MajorTopicYN="N">antibacterial surfaces/coatings</Keyword>
<Keyword MajorTopicYN="N">multifunctional biomaterials</Keyword>
<Keyword MajorTopicYN="N">nanotopography</Keyword>
<Keyword MajorTopicYN="N">porous implants</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27300485</ArticleId>
<ArticleId IdType="doi">10.1021/acsami.6b03152</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000653 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000653 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27300485
   |texte=   Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27300485" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021