Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.

Identifieur interne : 000630 ( Main/Corpus ); précédent : 000629; suivant : 000631

The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.

Auteurs : Peri Korshed ; Lin Li ; Zhu Liu ; Tao Wang

Source :

RBID : pubmed:27575485

English descriptors

Abstract

Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the cell membrane.

DOI: 10.1371/journal.pone.0160078
PubMed: 27575485
PubMed Central: PMC5004859

Links to Exploration step

pubmed:27575485

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.</title>
<author>
<name sortKey="Korshed, Peri" sort="Korshed, Peri" uniqKey="Korshed P" first="Peri" last="Korshed">Peri Korshed</name>
<affiliation>
<nlm:affiliation>Faculty of Medical and Human Science, the University of Manchester, Manchester, M13 9PL, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Lin" sort="Li, Lin" uniqKey="Li L" first="Lin" last="Li">Lin Li</name>
<affiliation>
<nlm:affiliation>Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, the University of Manchester, Manchester, M60 IQD, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhu" sort="Liu, Zhu" uniqKey="Liu Z" first="Zhu" last="Liu">Zhu Liu</name>
<affiliation>
<nlm:affiliation>Corrosion and Protection Centre, the Mill, School of Materials, The University of Manchester, Manchester, M13 9PL, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Tao" sort="Wang, Tao" uniqKey="Wang T" first="Tao" last="Wang">Tao Wang</name>
<affiliation>
<nlm:affiliation>Faculty of Medical and Human Science, the University of Manchester, Manchester, M13 9PL, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27575485</idno>
<idno type="pmid">27575485</idno>
<idno type="doi">10.1371/journal.pone.0160078</idno>
<idno type="pmc">PMC5004859</idno>
<idno type="wicri:Area/Main/Corpus">000630</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000630</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.</title>
<author>
<name sortKey="Korshed, Peri" sort="Korshed, Peri" uniqKey="Korshed P" first="Peri" last="Korshed">Peri Korshed</name>
<affiliation>
<nlm:affiliation>Faculty of Medical and Human Science, the University of Manchester, Manchester, M13 9PL, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Lin" sort="Li, Lin" uniqKey="Li L" first="Lin" last="Li">Lin Li</name>
<affiliation>
<nlm:affiliation>Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, the University of Manchester, Manchester, M60 IQD, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhu" sort="Liu, Zhu" uniqKey="Liu Z" first="Zhu" last="Liu">Zhu Liu</name>
<affiliation>
<nlm:affiliation>Corrosion and Protection Centre, the Mill, School of Materials, The University of Manchester, Manchester, M13 9PL, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Tao" sort="Wang, Tao" uniqKey="Wang T" first="Tao" last="Wang">Tao Wang</name>
<affiliation>
<nlm:affiliation>Faculty of Medical and Human Science, the University of Manchester, Manchester, M13 9PL, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Cell Line (MeSH)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Escherichia coli (drug effects)</term>
<term>Gram-Negative Bacteria (drug effects)</term>
<term>Gram-Negative Bacteria (metabolism)</term>
<term>Gram-Positive Bacteria (drug effects)</term>
<term>Gram-Positive Bacteria (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Lasers (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Pseudomonas aeruginosa (drug effects)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
<term>Staphylococcus aureus (drug effects)</term>
<term>Surface Properties (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
<term>Gram-Negative Bacteria</term>
<term>Gram-Positive Bacteria</term>
<term>Pseudomonas aeruginosa</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Gram-Negative Bacteria</term>
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Dose-Response Relationship, Drug</term>
<term>Humans</term>
<term>Lasers</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the cell membrane. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27575485</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.</ArticleTitle>
<Pagination>
<MedlinePgn>e0160078</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0160078</ELocationID>
<Abstract>
<AbstractText>Silver nanoparticles (Ag NPs) are known to have antibacterial properties. They are commonly produced by chemical synthesis which involves the use of harmful reducing agents. Contras, the laser technique is able to generate high-purity Ag NPs in water with specified surface charge characteristics. In the past, the molecular mechanisms contributing to the bactericidal effects of Ag NPs have been investigated extensively, but little is known of the antibacterial and toxic effects and mechanisms involved in laser-generated Ag NPs. In the current study Ag NPs were generated by picosecond laser ablation. Their antibacterial activity was determined on the gram-negative bacteria E. coli and Pseudomonas aeruginosa, and the gram positive bacteria Staphylococcus aureus including the methicillin resistant strain MRSA. Results showed that the laser generated Ag NPs exhibited strong dose-dependent antibacterial activity against all the three bacterial strains tested. Using E.coli as a model system, the laser Ag NPs treatment induced significantly high levels of reactive oxygen species (ROS). These ROS did not include detectable hydroxyl radicals, suggesting for the first time the selective ROS induction in bacterial cells by laser generated Ag NPs. The increased ROS was accompanied by significantly reduced cellular glutathione, and increased lipid peroxidation and permeability, suggesting ROS related bacterial cell damage. The laser generated Ag NPs exhibited low toxicity (within 72 hours) to five types of human cells although a weak significant decrease in cell survival was observed for endothelial cells and the lung cells. We conclude that picosecond laser generated Ag NPs have a broad spectrum of antibacterial effects against microbes including MRSA with minimal human cell toxicity. The oxidative stress is likely the key mechanism underlying the bactericidal effect, which leads to lipid peroxidation, depletion of glutathione, DNA damages and eventual disintegration of the cell membrane. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Korshed</LastName>
<ForeName>Peri</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Medical and Human Science, the University of Manchester, Manchester, M13 9PL, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, the University of Manchester, Manchester, M60 IQD, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Zhu</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Corrosion and Protection Centre, the Mill, School of Materials, The University of Manchester, Manchester, M13 9PL, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Medical and Human Science, the University of Manchester, Manchester, M13 9PL, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS One. 2018 Aug 30;13(8):e0203636</RefSource>
<PMID Version="1">30161224</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006090" MajorTopicYN="N">Gram-Negative Bacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006094" MajorTopicYN="N">Gram-Positive Bacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007834" MajorTopicYN="N">Lasers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27575485</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0160078</ArticleId>
<ArticleId IdType="pii">PONE-D-16-13776</ArticleId>
<ArticleId IdType="pmc">PMC5004859</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nanomedicine. 2007 Jun;3(2):168-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jan;85(4):1115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19669753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 29;581(13):2447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2007 Mar;3(1):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 05;8(8):e69534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2008 May;4(3):707-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plast Reconstr Surg. 2006 Jun;117(7 Suppl):110S-118S; discussion 119S-120S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16799377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2008 Jun 30;179(2):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2012;7:2767-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2009 Nov 15;339(2):521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Oct 16;46(20):11299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22998466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2012 Apr;279(7):1327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22324978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2013 Jul;87(7):1181-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Toxicol. 2014 Apr;34(4):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24243578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Exp Toxicol. 2002 Feb;21(2):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2007;46(26):4999-5002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2012 Feb;25(1):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21805351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Biol Chem. 2014 Nov 26;5(4):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Nov 24;4:7161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25418185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2014 Apr;169(4):301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23910454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2012 Feb 5;208(3):197-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22108609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Cent J. 2012 Jul 27;6(1):73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22839208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2009 Oct;30(30):5979-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnology. 2008 Jun 25;19(25):255102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21828644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2007 Nov 1;315(1):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17707388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 1988;35:95-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3065826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 12;9(9):e107175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25215881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56022</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23418497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2006 Mar 9;354(10):1001-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Sep;39(9):9193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2014 Feb 17;11:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24529161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Colloid Interface Sci. 2010 Apr 22;156(1-2):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Aug;46(8):2668-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2005 Oct;19(7):975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2002 Feb 21;233(1-2):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11897410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2007 Dec;19(12 ):2458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17822871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Dermatol Res. 2010 Dec;302(10):733-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotoxicology. 2009 Jan 1;3(4):307-318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20563262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Chest Dis Allied Sci. 2006 Jul-Sep;48(3):171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18610673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2013 Jan;51:1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22975145</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000630 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000630 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27575485
   |texte=   The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27575485" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021