Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

Identifieur interne : 000603 ( Main/Corpus ); précédent : 000602; suivant : 000604

The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

Auteurs : Aftab Ahmad ; Yun Wei ; Fatima Syed ; Kamran Tahir ; Aziz Ur Rehman ; Arifullah Khan ; Sadeeq Ullah ; Qipeng Yuan

Source :

RBID : pubmed:27916692

English descriptors

Abstract

Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles.

DOI: 10.1016/j.micpath.2016.11.030
PubMed: 27916692

Links to Exploration step

pubmed:27916692

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.</title>
<author>
<name sortKey="Ahmad, Aftab" sort="Ahmad, Aftab" uniqKey="Ahmad A" first="Aftab" last="Ahmad">Aftab Ahmad</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China. Electronic address: aftabbiochem@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wei, Yun" sort="Wei, Yun" uniqKey="Wei Y" first="Yun" last="Wei">Yun Wei</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Syed, Fatima" sort="Syed, Fatima" uniqKey="Syed F" first="Fatima" last="Syed">Fatima Syed</name>
<affiliation>
<nlm:affiliation>Institute of Chemical Sciences, University of Peshawar, 25120 Peshawar, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tahir, Kamran" sort="Tahir, Kamran" uniqKey="Tahir K" first="Kamran" last="Tahir">Kamran Tahir</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rehman, Aziz Ur" sort="Rehman, Aziz Ur" uniqKey="Rehman A" first="Aziz Ur" last="Rehman">Aziz Ur Rehman</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khan, Arifullah" sort="Khan, Arifullah" uniqKey="Khan A" first="Arifullah" last="Khan">Arifullah Khan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ullah, Sadeeq" sort="Ullah, Sadeeq" uniqKey="Ullah S" first="Sadeeq" last="Ullah">Sadeeq Ullah</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Qipeng" sort="Yuan, Qipeng" uniqKey="Yuan Q" first="Qipeng" last="Yuan">Qipeng Yuan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China. Electronic address: yuanqp@mail.buct.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27916692</idno>
<idno type="pmid">27916692</idno>
<idno type="doi">10.1016/j.micpath.2016.11.030</idno>
<idno type="wicri:Area/Main/Corpus">000603</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000603</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.</title>
<author>
<name sortKey="Ahmad, Aftab" sort="Ahmad, Aftab" uniqKey="Ahmad A" first="Aftab" last="Ahmad">Aftab Ahmad</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China. Electronic address: aftabbiochem@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wei, Yun" sort="Wei, Yun" uniqKey="Wei Y" first="Yun" last="Wei">Yun Wei</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Syed, Fatima" sort="Syed, Fatima" uniqKey="Syed F" first="Fatima" last="Syed">Fatima Syed</name>
<affiliation>
<nlm:affiliation>Institute of Chemical Sciences, University of Peshawar, 25120 Peshawar, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tahir, Kamran" sort="Tahir, Kamran" uniqKey="Tahir K" first="Kamran" last="Tahir">Kamran Tahir</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rehman, Aziz Ur" sort="Rehman, Aziz Ur" uniqKey="Rehman A" first="Aziz Ur" last="Rehman">Aziz Ur Rehman</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khan, Arifullah" sort="Khan, Arifullah" uniqKey="Khan A" first="Arifullah" last="Khan">Arifullah Khan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ullah, Sadeeq" sort="Ullah, Sadeeq" uniqKey="Ullah S" first="Sadeeq" last="Ullah">Sadeeq Ullah</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Qipeng" sort="Yuan, Qipeng" uniqKey="Yuan Q" first="Qipeng" last="Yuan">Qipeng Yuan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China. Electronic address: yuanqp@mail.buct.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial pathogenesis</title>
<idno type="eISSN">1096-1208</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Bacteria (drug effects)</term>
<term>Bacteria (metabolism)</term>
<term>Bacteria (ultrastructure)</term>
<term>Green Chemistry Technology (MeSH)</term>
<term>Membrane Potentials (drug effects)</term>
<term>Metal Nanoparticles (administration & dosage)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Particle Size (MeSH)</term>
<term>Photoelectron Spectroscopy (MeSH)</term>
<term>Plant Extracts (chemistry)</term>
<term>Plant Extracts (pharmacology)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Silver (chemistry)</term>
<term>Spectroscopy, Fourier Transform Infrared (MeSH)</term>
<term>X-Ray Diffraction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Plant Extracts</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" qualifier="administration & dosage" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bacteria</term>
<term>Membrane Potentials</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Green Chemistry Technology</term>
<term>Microbial Sensitivity Tests</term>
<term>Particle Size</term>
<term>Photoelectron Spectroscopy</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>X-Ray Diffraction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27916692</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>12</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-1208</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>102</Volume>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Microbial pathogenesis</Title>
<ISOAbbreviation>Microb Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.</ArticleTitle>
<Pagination>
<MedlinePgn>133-142</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0882-4010(16)30746-X</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.micpath.2016.11.030</ELocationID>
<Abstract>
<AbstractText>Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ahmad</LastName>
<ForeName>Aftab</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China. Electronic address: aftabbiochem@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Yun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Syed</LastName>
<ForeName>Fatima</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institute of Chemical Sciences, University of Peshawar, 25120 Peshawar, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tahir</LastName>
<ForeName>Kamran</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rehman</LastName>
<ForeName>Aziz Ur</ForeName>
<Initials>AU</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Arifullah</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ullah</LastName>
<ForeName>Sadeeq</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Qipeng</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China. Electronic address: yuanqp@mail.buct.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microb Pathog</MedlineTA>
<NlmUniqueID>8606191</NlmUniqueID>
<ISSNLinking>0882-4010</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055772" MajorTopicYN="Y">Green Chemistry Technology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008564" MajorTopicYN="N">Membrane Potentials</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010316" MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056951" MajorTopicYN="N">Photoelectron Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="Y">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Bacteria</Keyword>
<Keyword MajorTopicYN="Y">Coptis Chinensis</Keyword>
<Keyword MajorTopicYN="Y">Membrane potential</Keyword>
<Keyword MajorTopicYN="Y">Silver nanoparticles</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27916692</ArticleId>
<ArticleId IdType="pii">S0882-4010(16)30746-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.micpath.2016.11.030</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000603 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000603 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27916692
   |texte=   The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27916692" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021