Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous Biomaterials to Fully Eradicate Planktonic and Adherent Staphylococcus aureus.

Identifieur interne : 000531 ( Main/Corpus ); précédent : 000530; suivant : 000532

Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous Biomaterials to Fully Eradicate Planktonic and Adherent Staphylococcus aureus.

Auteurs : S. Bakhshandeh ; Z. Gorgin Karaji ; K. Lietaert ; A C Fluit ; C H E. Boel ; H C Vogely ; T. Vermonden ; W E Hennink ; H. Weinans ; A A Zadpoor ; S. Amin Yavari

Source :

RBID : pubmed:28696671

English descriptors

Abstract

Implant-associated infections are notoriously difficult to treat and may even result in amputation and death. The first few days after surgery are the most critical time to prevent those infections, preferably through full eradication of the micro-organisms entering the body perioperatively. That is particularly important for patients with a compromised immune system such as orthopedic oncology patients, as they are at higher risk for infection and complications. Full eradication of bacteria is, especially in a biofilm, extremely challenging due to the toxicity barrier that prevents delivery of high doses of antibacterial agents. This study aimed to use the potential synergistic effects of multiple antibacterial agents to prevent the use of toxic levels of these agents and achieve full eradication of planktonic and adherent bacteria. Silver ions and vancomycin were therefore simultaneously delivered from additively manufactured highly porous titanium implants with an extremely high surface area incorporating a bactericidal coating made from chitosan and gelatin applied by electrophoretic deposition (EPD). The presence of the chitosan/gelatin (Ch+Gel) coating, Ag, and vancomycin (Vanco) was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The release of vancomycin and silver ions continued for at least 21 days as measured by inductively coupled plasma (ICP) and UV-spectroscopy. Antibacterial behavior against Staphylococcus aureus, both planktonic and in biofilm, was evaluated for up to 21 days. The Ch+Gel coating showed some bactericidal behavior on its own, while the loaded hydrogels (Ch+Gel+Ag and Ch+Gel+Vanco) achieved full eradication of both planktonic and adherent bacteria without causing significant levels of toxicity. Combining silver and vancomycin improved the release profiles of both agents and revealed a synergistic behavior that further increased the bactericidal effects.

DOI: 10.1021/acsami.7b04950
PubMed: 28696671
PubMed Central: PMC5553095

Links to Exploration step

pubmed:28696671

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous Biomaterials to Fully Eradicate Planktonic and Adherent Staphylococcus aureus.</title>
<author>
<name sortKey="Bakhshandeh, S" sort="Bakhshandeh, S" uniqKey="Bakhshandeh S" first="S" last="Bakhshandeh">S. Bakhshandeh</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorgin Karaji, Z" sort="Gorgin Karaji, Z" uniqKey="Gorgin Karaji Z" first="Z" last="Gorgin Karaji">Z. Gorgin Karaji</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, Kermanshah University of Technology , Kermanshah, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lietaert, K" sort="Lietaert, K" uniqKey="Lietaert K" first="K" last="Lietaert">K. Lietaert</name>
<affiliation>
<nlm:affiliation>3D Systems - LayerWise NV , 3001 Leuven, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Metallurgy and Materials Engineering, KU Leuven , 3000 Leuven, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fluit, A C" sort="Fluit, A C" uniqKey="Fluit A" first="A C" last="Fluit">A C Fluit</name>
</author>
<author>
<name sortKey="Boel, C H E" sort="Boel, C H E" uniqKey="Boel C" first="C H E" last="Boel">C H E. Boel</name>
</author>
<author>
<name sortKey="Vogely, H C" sort="Vogely, H C" uniqKey="Vogely H" first="H C" last="Vogely">H C Vogely</name>
</author>
<author>
<name sortKey="Vermonden, T" sort="Vermonden, T" uniqKey="Vermonden T" first="T" last="Vermonden">T. Vermonden</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University , 3512 JE Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hennink, W E" sort="Hennink, W E" uniqKey="Hennink W" first="W E" last="Hennink">W E Hennink</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University , 3512 JE Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weinans, H" sort="Weinans, H" uniqKey="Weinans H" first="H" last="Weinans">H. Weinans</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zadpoor, A A" sort="Zadpoor, A A" uniqKey="Zadpoor A" first="A A" last="Zadpoor">A A Zadpoor</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amin Yavari, S" sort="Amin Yavari, S" uniqKey="Amin Yavari S" first="S" last="Amin Yavari">S. Amin Yavari</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28696671</idno>
<idno type="pmid">28696671</idno>
<idno type="doi">10.1021/acsami.7b04950</idno>
<idno type="pmc">PMC5553095</idno>
<idno type="wicri:Area/Main/Corpus">000531</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000531</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous Biomaterials to Fully Eradicate Planktonic and Adherent Staphylococcus aureus.</title>
<author>
<name sortKey="Bakhshandeh, S" sort="Bakhshandeh, S" uniqKey="Bakhshandeh S" first="S" last="Bakhshandeh">S. Bakhshandeh</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorgin Karaji, Z" sort="Gorgin Karaji, Z" uniqKey="Gorgin Karaji Z" first="Z" last="Gorgin Karaji">Z. Gorgin Karaji</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, Kermanshah University of Technology , Kermanshah, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lietaert, K" sort="Lietaert, K" uniqKey="Lietaert K" first="K" last="Lietaert">K. Lietaert</name>
<affiliation>
<nlm:affiliation>3D Systems - LayerWise NV , 3001 Leuven, Belgium.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Metallurgy and Materials Engineering, KU Leuven , 3000 Leuven, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fluit, A C" sort="Fluit, A C" uniqKey="Fluit A" first="A C" last="Fluit">A C Fluit</name>
</author>
<author>
<name sortKey="Boel, C H E" sort="Boel, C H E" uniqKey="Boel C" first="C H E" last="Boel">C H E. Boel</name>
</author>
<author>
<name sortKey="Vogely, H C" sort="Vogely, H C" uniqKey="Vogely H" first="H C" last="Vogely">H C Vogely</name>
</author>
<author>
<name sortKey="Vermonden, T" sort="Vermonden, T" uniqKey="Vermonden T" first="T" last="Vermonden">T. Vermonden</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University , 3512 JE Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hennink, W E" sort="Hennink, W E" uniqKey="Hennink W" first="W E" last="Hennink">W E Hennink</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University , 3512 JE Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weinans, H" sort="Weinans, H" uniqKey="Weinans H" first="H" last="Weinans">H. Weinans</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zadpoor, A A" sort="Zadpoor, A A" uniqKey="Zadpoor A" first="A A" last="Zadpoor">A A Zadpoor</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amin Yavari, S" sort="Amin Yavari, S" uniqKey="Amin Yavari S" first="S" last="Amin Yavari">S. Amin Yavari</name>
<affiliation>
<nlm:affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS applied materials & interfaces</title>
<idno type="eISSN">1944-8252</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Biocompatible Materials (MeSH)</term>
<term>Coated Materials, Biocompatible (MeSH)</term>
<term>Plankton (MeSH)</term>
<term>Silver (MeSH)</term>
<term>Staphylococcal Infections (MeSH)</term>
<term>Staphylococcus aureus (MeSH)</term>
<term>Titanium (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biocompatible Materials</term>
<term>Coated Materials, Biocompatible</term>
<term>Silver</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plankton</term>
<term>Staphylococcal Infections</term>
<term>Staphylococcus aureus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Implant-associated infections are notoriously difficult to treat and may even result in amputation and death. The first few days after surgery are the most critical time to prevent those infections, preferably through full eradication of the micro-organisms entering the body perioperatively. That is particularly important for patients with a compromised immune system such as orthopedic oncology patients, as they are at higher risk for infection and complications. Full eradication of bacteria is, especially in a biofilm, extremely challenging due to the toxicity barrier that prevents delivery of high doses of antibacterial agents. This study aimed to use the potential synergistic effects of multiple antibacterial agents to prevent the use of toxic levels of these agents and achieve full eradication of planktonic and adherent bacteria. Silver ions and vancomycin were therefore simultaneously delivered from additively manufactured highly porous titanium implants with an extremely high surface area incorporating a bactericidal coating made from chitosan and gelatin applied by electrophoretic deposition (EPD). The presence of the chitosan/gelatin (Ch+Gel) coating, Ag, and vancomycin (Vanco) was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The release of vancomycin and silver ions continued for at least 21 days as measured by inductively coupled plasma (ICP) and UV-spectroscopy. Antibacterial behavior against Staphylococcus aureus, both planktonic and in biofilm, was evaluated for up to 21 days. The Ch+Gel coating showed some bactericidal behavior on its own, while the loaded hydrogels (Ch+Gel+Ag and Ch+Gel+Vanco) achieved full eradication of both planktonic and adherent bacteria without causing significant levels of toxicity. Combining silver and vancomycin improved the release profiles of both agents and revealed a synergistic behavior that further increased the bactericidal effects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28696671</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>31</Issue>
<PubDate>
<Year>2017</Year>
<Month>Aug</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous Biomaterials to Fully Eradicate Planktonic and Adherent Staphylococcus aureus.</ArticleTitle>
<Pagination>
<MedlinePgn>25691-25699</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsami.7b04950</ELocationID>
<Abstract>
<AbstractText>Implant-associated infections are notoriously difficult to treat and may even result in amputation and death. The first few days after surgery are the most critical time to prevent those infections, preferably through full eradication of the micro-organisms entering the body perioperatively. That is particularly important for patients with a compromised immune system such as orthopedic oncology patients, as they are at higher risk for infection and complications. Full eradication of bacteria is, especially in a biofilm, extremely challenging due to the toxicity barrier that prevents delivery of high doses of antibacterial agents. This study aimed to use the potential synergistic effects of multiple antibacterial agents to prevent the use of toxic levels of these agents and achieve full eradication of planktonic and adherent bacteria. Silver ions and vancomycin were therefore simultaneously delivered from additively manufactured highly porous titanium implants with an extremely high surface area incorporating a bactericidal coating made from chitosan and gelatin applied by electrophoretic deposition (EPD). The presence of the chitosan/gelatin (Ch+Gel) coating, Ag, and vancomycin (Vanco) was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The release of vancomycin and silver ions continued for at least 21 days as measured by inductively coupled plasma (ICP) and UV-spectroscopy. Antibacterial behavior against Staphylococcus aureus, both planktonic and in biofilm, was evaluated for up to 21 days. The Ch+Gel coating showed some bactericidal behavior on its own, while the loaded hydrogels (Ch+Gel+Ag and Ch+Gel+Vanco) achieved full eradication of both planktonic and adherent bacteria without causing significant levels of toxicity. Combining silver and vancomycin improved the release profiles of both agents and revealed a synergistic behavior that further increased the bactericidal effects.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bakhshandeh</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6956-7900</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gorgin Karaji</LastName>
<ForeName>Z</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2719-7192</Identifier>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Kermanshah University of Technology , Kermanshah, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lietaert</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>3D Systems - LayerWise NV , 3001 Leuven, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Metallurgy and Materials Engineering, KU Leuven , 3000 Leuven, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fluit</LastName>
<ForeName>A C</ForeName>
<Initials>AC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boel</LastName>
<ForeName>C H E</ForeName>
<Initials>CHE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vogely</LastName>
<ForeName>H C</ForeName>
<Initials>HC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vermonden</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6047-5900</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University , 3512 JE Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hennink</LastName>
<ForeName>W E</ForeName>
<Initials>WE</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University , 3512 JE Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weinans</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2275-6170</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zadpoor</LastName>
<ForeName>A A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amin Yavari</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1677-5751</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biomechanical Engineering, Delft University of Technology , 2628 CD Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001672">Biocompatible Materials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020099">Coated Materials, Biocompatible</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001672" MajorTopicYN="N">Biocompatible Materials</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020099" MajorTopicYN="N">Coated Materials, Biocompatible</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010933" MajorTopicYN="N">Plankton</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013203" MajorTopicYN="N">Staphylococcal Infections</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">additive manufacturing</Keyword>
<Keyword MajorTopicYN="N">antibacterial surfaces/coatings</Keyword>
<Keyword MajorTopicYN="N">electrophoretic deposition</Keyword>
<Keyword MajorTopicYN="N">hydrogels</Keyword>
<Keyword MajorTopicYN="N">multifunctional biomaterials</Keyword>
<Keyword MajorTopicYN="N">porous implants</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28696671</ArticleId>
<ArticleId IdType="doi">10.1021/acsami.7b04950</ArticleId>
<ArticleId IdType="pmc">PMC5553095</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 May 21;284(5418):1318-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10334980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Treat Rev. 2000 Oct;26(5):363-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2001 Sep 1;33 Suppl 2:S94-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11486305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bone. 2002 Aug;31(2):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12151085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Oct 14;351(16):1645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2005 Jul 29;57(10):1539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2006 May;27(13):2651-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16423390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer. 2007 Apr 1;109(7):1420-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17326055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2007 Jun;3(2):168-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res A. 2008 Sep 15;86(4):865-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18041731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2009 Jan;5(1):453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18675601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2009 Feb 24;3(2):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Infect Control. 2009 Dec;37(10):783-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20004811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2010 May 10;11(5):1254-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2009 Mar;2(2):186-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2011 May;7(5):2327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21295166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnology. 2011 Apr 1;22(13):135101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21343644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2011 Apr 15;52(8):969-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Jul;55(7):3432-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Oral Implants Res. 2013 Aug;24(8):853-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22168601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2012 May;112(5):841-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22324439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 May 30;134(21):8790-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22568755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2012 Nov;8(11):4191-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22813846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Feb;57(2):734-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23165462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Orthop Res. 2013 May;31(5):792-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23255164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2013 Jun 19;5(190):190ra81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Eng Part A. 2013 Dec;19(23-24):2605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23822814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2013;8:3187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemMedChem. 2014 Jun;9(6):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24799389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2014 Aug;35(24):6172-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24811260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2015 Feb;70(2):325-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Cell Mater. 2015 Mar 04;29:141-53; discussion 153-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25738583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2016 Jan;30:13-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26555378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 May 4;8(17):11162-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27054673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17080-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27300485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Jul 6;8(26):16584-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27336202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1293-1304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28001358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2017 Sep;140:1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Materials (Basel). 2015 Apr 21;8(4):1871-1896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28788037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Sep 25;237(4822):1588-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3629258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev B Condens Matter. 1990 Feb 15;41(5):3190-3199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9994097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28696671
   |texte=   Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous Biomaterials to Fully Eradicate Planktonic and Adherent Staphylococcus aureus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28696671" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021