Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium.

Identifieur interne : 000442 ( Main/Corpus ); précédent : 000441; suivant : 000443

Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium.

Auteurs : Seong B. Park ; Christy S. Steadman ; Atul A. Chaudhari ; Shreekumar R. Pillai ; Shree R. Singh ; Peter L. Ryan ; Scott T. Willard ; Jean M. Feugang

Source :

RBID : pubmed:29587743

English descriptors

Abstract

BACKGROUND

Synthesis of silver nano-compounds with enhanced antimicrobial effects is of great interest for the development of new antibacterial agents. Previous studies have reported the antibacterial properties of pegylated silver-coated carbon nanotubes (pSWCNT-Ag) showing less toxicity in human cell lines. However, the mechanism underlining the pSWCNT-Ag as a bactericidal agent remained unfolded. Here we assessed the pSWCNT-Ag effects against foodborne pathogenic bacteria growth and proteome profile changes.

RESULTS

Measurements of bioluminescent imaging, optical density, and bacteria colony forming units revealed dose-dependent and stronger bactericidal activity of pSWCNT-Ag than their non-pegylated counterparts (SWCNT-Ag). In ovo administration of pSWCNT-Ag or phosphate-buffered saline resulted in comparable chicken embryo development and growth. The proteomic analysis, using two-dimensional electrophoresis combined with matrix assisted laser desorption/ionization time of flight/time of flight mass spectrometry, was performed on control and surviving Salmonella enterica serovar Typhimurium to pSWCNT-Ag. A total of 15 proteins (ten up-regulated and five down-regulated) differentially expressed proteins were identified. Functional analyses showed significant reduction of proteins associated with biofilm formation, nutrient and energy metabolism, quorum sensing and maintenance of cell structure and cell motility in surviving S. Typhimurium. In contrast, proteins associated with oxygen stress, DNA protection, starvation, membrane rebuilding, and alternative nutrient formation were induced as the compensatory reaction.

CONCLUSIONS

This study provides further evidence of the antibacterial effects of pSWCNT-Ag nanocomposites and knowledge of their mechanism of action through various protein changes. The findings may lead to the development of more effective and safe antimicrobial agents.


DOI: 10.1186/s12951-018-0355-0
PubMed: 29587743
PubMed Central: PMC5870919

Links to Exploration step

pubmed:29587743

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium.</title>
<author>
<name sortKey="Park, Seong B" sort="Park, Seong B" uniqKey="Park S" first="Seong B" last="Park">Seong B. Park</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steadman, Christy S" sort="Steadman, Christy S" uniqKey="Steadman C" first="Christy S" last="Steadman">Christy S. Steadman</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chaudhari, Atul A" sort="Chaudhari, Atul A" uniqKey="Chaudhari A" first="Atul A" last="Chaudhari">Atul A. Chaudhari</name>
<affiliation>
<nlm:affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pillai, Shreekumar R" sort="Pillai, Shreekumar R" uniqKey="Pillai S" first="Shreekumar R" last="Pillai">Shreekumar R. Pillai</name>
<affiliation>
<nlm:affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Shree R" sort="Singh, Shree R" uniqKey="Singh S" first="Shree R" last="Singh">Shree R. Singh</name>
<affiliation>
<nlm:affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Peter L" sort="Ryan, Peter L" uniqKey="Ryan P" first="Peter L" last="Ryan">Peter L. Ryan</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Willard, Scott T" sort="Willard, Scott T" uniqKey="Willard S" first="Scott T" last="Willard">Scott T. Willard</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feugang, Jean M" sort="Feugang, Jean M" uniqKey="Feugang J" first="Jean M" last="Feugang">Jean M. Feugang</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA. jn181@ads.msstate.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29587743</idno>
<idno type="pmid">29587743</idno>
<idno type="doi">10.1186/s12951-018-0355-0</idno>
<idno type="pmc">PMC5870919</idno>
<idno type="wicri:Area/Main/Corpus">000442</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000442</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium.</title>
<author>
<name sortKey="Park, Seong B" sort="Park, Seong B" uniqKey="Park S" first="Seong B" last="Park">Seong B. Park</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steadman, Christy S" sort="Steadman, Christy S" uniqKey="Steadman C" first="Christy S" last="Steadman">Christy S. Steadman</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chaudhari, Atul A" sort="Chaudhari, Atul A" uniqKey="Chaudhari A" first="Atul A" last="Chaudhari">Atul A. Chaudhari</name>
<affiliation>
<nlm:affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pillai, Shreekumar R" sort="Pillai, Shreekumar R" uniqKey="Pillai S" first="Shreekumar R" last="Pillai">Shreekumar R. Pillai</name>
<affiliation>
<nlm:affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Shree R" sort="Singh, Shree R" uniqKey="Singh S" first="Shree R" last="Singh">Shree R. Singh</name>
<affiliation>
<nlm:affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Peter L" sort="Ryan, Peter L" uniqKey="Ryan P" first="Peter L" last="Ryan">Peter L. Ryan</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Willard, Scott T" sort="Willard, Scott T" uniqKey="Willard S" first="Scott T" last="Willard">Scott T. Willard</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feugang, Jean M" sort="Feugang, Jean M" uniqKey="Feugang J" first="Jean M" last="Feugang">Jean M. Feugang</name>
<affiliation>
<nlm:affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA. jn181@ads.msstate.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of nanobiotechnology</title>
<idno type="eISSN">1477-3155</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Bacterial Proteins (agonists)</term>
<term>Bacterial Proteins (antagonists & inhibitors)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biofilms (drug effects)</term>
<term>Biofilms (growth & development)</term>
<term>Chick Embryo (MeSH)</term>
<term>Drug Compounding (MeSH)</term>
<term>Embryonic Development (drug effects)</term>
<term>Food Microbiology (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (drug effects)</term>
<term>Gene Ontology (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Luminescent Measurements (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Nanocomposites (chemistry)</term>
<term>Nanotubes, Carbon (chemistry)</term>
<term>Polyethylene Glycols (chemistry)</term>
<term>Proteome (agonists)</term>
<term>Proteome (antagonists & inhibitors)</term>
<term>Proteome (genetics)</term>
<term>Proteome (metabolism)</term>
<term>Proteomics (methods)</term>
<term>Quorum Sensing (drug effects)</term>
<term>Quorum Sensing (genetics)</term>
<term>Salmonella typhimurium (drug effects)</term>
<term>Salmonella typhimurium (genetics)</term>
<term>Salmonella typhimurium (growth & development)</term>
<term>Salmonella typhimurium (metabolism)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="agonists" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Nanotubes, Carbon</term>
<term>Polyethylene Glycols</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanocomposites</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biofilms</term>
<term>Embryonic Development</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Quorum Sensing</term>
<term>Salmonella typhimurium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Quorum Sensing</term>
<term>Salmonella typhimurium</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Biofilms</term>
<term>Salmonella typhimurium</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Salmonella typhimurium</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chick Embryo</term>
<term>Drug Compounding</term>
<term>Food Microbiology</term>
<term>Gene Ontology</term>
<term>Humans</term>
<term>Luminescent Measurements</term>
<term>Molecular Sequence Annotation</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Synthesis of silver nano-compounds with enhanced antimicrobial effects is of great interest for the development of new antibacterial agents. Previous studies have reported the antibacterial properties of pegylated silver-coated carbon nanotubes (pSWCNT-Ag) showing less toxicity in human cell lines. However, the mechanism underlining the pSWCNT-Ag as a bactericidal agent remained unfolded. Here we assessed the pSWCNT-Ag effects against foodborne pathogenic bacteria growth and proteome profile changes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Measurements of bioluminescent imaging, optical density, and bacteria colony forming units revealed dose-dependent and stronger bactericidal activity of pSWCNT-Ag than their non-pegylated counterparts (SWCNT-Ag). In ovo administration of pSWCNT-Ag or phosphate-buffered saline resulted in comparable chicken embryo development and growth. The proteomic analysis, using two-dimensional electrophoresis combined with matrix assisted laser desorption/ionization time of flight/time of flight mass spectrometry, was performed on control and surviving Salmonella enterica serovar Typhimurium to pSWCNT-Ag. A total of 15 proteins (ten up-regulated and five down-regulated) differentially expressed proteins were identified. Functional analyses showed significant reduction of proteins associated with biofilm formation, nutrient and energy metabolism, quorum sensing and maintenance of cell structure and cell motility in surviving S. Typhimurium. In contrast, proteins associated with oxygen stress, DNA protection, starvation, membrane rebuilding, and alternative nutrient formation were induced as the compensatory reaction.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides further evidence of the antibacterial effects of pSWCNT-Ag nanocomposites and knowledge of their mechanism of action through various protein changes. The findings may lead to the development of more effective and safe antimicrobial agents.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29587743</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>09</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1477-3155</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Mar</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Journal of nanobiotechnology</Title>
<ISOAbbreviation>J Nanobiotechnology</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium.</ArticleTitle>
<Pagination>
<MedlinePgn>31</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12951-018-0355-0</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Synthesis of silver nano-compounds with enhanced antimicrobial effects is of great interest for the development of new antibacterial agents. Previous studies have reported the antibacterial properties of pegylated silver-coated carbon nanotubes (pSWCNT-Ag) showing less toxicity in human cell lines. However, the mechanism underlining the pSWCNT-Ag as a bactericidal agent remained unfolded. Here we assessed the pSWCNT-Ag effects against foodborne pathogenic bacteria growth and proteome profile changes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Measurements of bioluminescent imaging, optical density, and bacteria colony forming units revealed dose-dependent and stronger bactericidal activity of pSWCNT-Ag than their non-pegylated counterparts (SWCNT-Ag). In ovo administration of pSWCNT-Ag or phosphate-buffered saline resulted in comparable chicken embryo development and growth. The proteomic analysis, using two-dimensional electrophoresis combined with matrix assisted laser desorption/ionization time of flight/time of flight mass spectrometry, was performed on control and surviving Salmonella enterica serovar Typhimurium to pSWCNT-Ag. A total of 15 proteins (ten up-regulated and five down-regulated) differentially expressed proteins were identified. Functional analyses showed significant reduction of proteins associated with biofilm formation, nutrient and energy metabolism, quorum sensing and maintenance of cell structure and cell motility in surviving S. Typhimurium. In contrast, proteins associated with oxygen stress, DNA protection, starvation, membrane rebuilding, and alternative nutrient formation were induced as the compensatory reaction.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides further evidence of the antibacterial effects of pSWCNT-Ag nanocomposites and knowledge of their mechanism of action through various protein changes. The findings may lead to the development of more effective and safe antimicrobial agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Seong B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steadman</LastName>
<ForeName>Christy S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaudhari</LastName>
<ForeName>Atul A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pillai</LastName>
<ForeName>Shreekumar R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Shree R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanobiotechnology Research, Alabama State University, Montgomery, AL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ryan</LastName>
<ForeName>Peter L</ForeName>
<Initials>PL</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Willard</LastName>
<ForeName>Scott T</ForeName>
<Initials>ST</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feugang</LastName>
<ForeName>Jean M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1376-5059</Identifier>
<AffiliationInfo>
<Affiliation>Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA. jn181@ads.msstate.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>58-6402-3-018</GrantID>
<Agency>USDA-ARS</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Nanobiotechnology</MedlineTA>
<NlmUniqueID>101152208</NlmUniqueID>
<ISSNLinking>1477-3155</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037742">Nanotubes, Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3WJQ0SDW1A</RegistryNumber>
<NameOfSubstance UI="D011092">Polyethylene Glycols</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="N">Biofilms</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002642" MajorTopicYN="N">Chick Embryo</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004339" MajorTopicYN="N">Drug Compounding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047108" MajorTopicYN="N">Embryonic Development</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005516" MajorTopicYN="N">Food Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008163" MajorTopicYN="N">Luminescent Measurements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053761" MajorTopicYN="N">Nanocomposites</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037742" MajorTopicYN="N">Nanotubes, Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011092" MajorTopicYN="N">Polyethylene Glycols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053038" MajorTopicYN="N">Quorum Sensing</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012486" MajorTopicYN="N">Salmonella typhimurium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019032" MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bacterial growth kinetics</Keyword>
<Keyword MajorTopicYN="N">Bioluminescence imaging</Keyword>
<Keyword MajorTopicYN="N">Chicken embryo development</Keyword>
<Keyword MajorTopicYN="N">Foodborne pathogens</Keyword>
<Keyword MajorTopicYN="N">Pegylated silver-coated carbon nanotubes</Keyword>
<Keyword MajorTopicYN="N">Proteomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29587743</ArticleId>
<ArticleId IdType="doi">10.1186/s12951-018-0355-0</ArticleId>
<ArticleId IdType="pii">10.1186/s12951-018-0355-0</ArticleId>
<ArticleId IdType="pmc">PMC5870919</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 1989 Jun;57(6):1858-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2722244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2006 Jul;6(7):1522-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16834443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2011 Oct 24;16(10):8894-918</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22024958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2012 Jun;76(2):311-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22688815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Morphol. 1951 Jan;88(1):49-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24539719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2007 Mar;3(1):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010 Nov 02;10:276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21044338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofouling. 2014;30(3):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24564796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17480-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21969563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2003 Jan;3(1):47-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12505035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2009 Jun 8;10(6):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19405545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Apr 1;253(1):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9578487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale Res Lett. 2013 May 24;8(1):251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23705751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2012 Jan;8(1):37-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21703988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2004 Feb;72(2):1155-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2011 Jan;17(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21192848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Oct 4;44(39):13214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2005 Feb 12-18;365(9459):548-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2010 Oct 19;26(20):16013-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20849142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endod. 2014 Feb;40(2):285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24461420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanobiotechnology. 2017 Mar 31;15(1):25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28359284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2009 Apr;31(4):459-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 May;1(6):795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9660963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23255416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2003 Feb;21(2):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2009 Oct;30(30):5979-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Meat Sci. 2010 Sep;86(1):2-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20510532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Dec 13;12(6):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23245323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res. 2000 Dec 15;52(4):662-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11033548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2013 Feb 1;102:300-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23006569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanobiotechnology. 2011 Dec 07;9:56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22152042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2009 Apr;12(2):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 Jul 1;44(13):5210-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20509652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2012 Oct;30(10):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22884769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Mar;193(6):1385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanobiotechnology. 2015 Mar 22;13:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2013 Jan 14;10(1):278-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23343983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoonoses Public Health. 2009 Apr;56(3):145-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Jan-Feb;27(1):76-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2012 Aug 8;12(8):4271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22765771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 May 18;20(5):8856-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25993417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2001;55:165-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2007 Aug 14;23(17):8670-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2011 Nov;157(Pt 11):3150-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2012 Dec;80(12):4291-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23006851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2005 Feb;5(2):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2002 Sep 1;35(Suppl 1):S65-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12173111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanobiotechnology. 2011 Nov 10;9:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22071005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2016 Dec;25(12 ):2142-2151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27616205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Rev. 1996;18(1):29-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8877329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2001 Jul 10;201(1):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11445165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000442 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000442 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29587743
   |texte=   Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29587743" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021