Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.

Identifieur interne : 000423 ( Main/Corpus ); précédent : 000422; suivant : 000424

Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.

Auteurs : Bingbing Fan ; Yaya Li ; Fengqi Han ; Tingting Su ; Jingguo Li ; Rui Zhang

Source :

RBID : pubmed:29748718

English descriptors

Abstract

The present paper represents a facile and rapid synthesis of silver-reduced graphene oxide Ag/rGO (Ag/reduced graphite oxides) composites with the help of microwave irradiation. This is a rapid green route requiring power microwave irradiation only 400 W(30 s) and 200 W (60 s) for the uniform Ag nanoparticles with average diameter of ~10 nm embedded on rGO sheets. In the microwave irradiation process, rGO samples absorb electromagnetic energy to be heated rapidly due to their intrinsic dielectric and conductive losses. Local hot sheets appear in aqueous solution, facilitating homogeneous nucleation, as well as the grain growth of Ag crystallites throughout the rGO sheets. The obtained Ag/rGO composites exhibited significant antibacterial property towards Gram-negative bacteria (E. coli and P. aeruginosa), Gram-positive bacteria (S. aureus and Enterococcus), and white rot fungus. The minimum bactericidal concentration of the Ag /rGO nanocomposite against E. coli was about 1 μg/mL. Strong interaction between Ag/rGO composites and bacteria contributed to the totally non-activity of bacteria. We designed Ag/rGO nanocomposite with excellent antibacterial activities by facile andrapid microwave-assisted green route. In Ag/rGO nanocomposite, the morphology and size distributions of Ag particles anchored on the rGO sheets can controlled via the microwave irradiation power and time. The results suggested that in the microwave field, GO reduced into unique rGO sheets and uniform AgNPs with average size of 12 nm can be decorated on rGO sheets at 30 s and at 200 W, respectively. we successfully demonstrated small silver particles anchored on graphene displayed great antibacterial activities against Gram-negative bacteria (E. coli and P. aeruginosa), Gram-positive bacteria (S. aureus and Enterococcus) and white rot fungus. Ag/rGO nanocomposites may have potential applications as antibacterial agent for daily life.

DOI: 10.1007/s10856-018-6081-1
PubMed: 29748718

Links to Exploration step

pubmed:29748718

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.</title>
<author>
<name sortKey="Fan, Bingbing" sort="Fan, Bingbing" uniqKey="Fan B" first="Bingbing" last="Fan">Bingbing Fan</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yaya" sort="Li, Yaya" uniqKey="Li Y" first="Yaya" last="Li">Yaya Li</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Fengqi" sort="Han, Fengqi" uniqKey="Han F" first="Fengqi" last="Han">Fengqi Han</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Tingting" sort="Su, Tingting" uniqKey="Su T" first="Tingting" last="Su">Tingting Su</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingguo" sort="Li, Jingguo" uniqKey="Li J" first="Jingguo" last="Li">Jingguo Li</name>
<affiliation>
<nlm:affiliation>Zhengzhou University People's hospital, Zhengzhou University, Zhengzhou, Henan, 450003, China. lijingguo@zzu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Rui" sort="Zhang, Rui" uniqKey="Zhang R" first="Rui" last="Zhang">Rui Zhang</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China. zhangray@zzu.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Henan Key Laboratory of Aeronautical Material and Application Technology, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450015, China. zhangray@zzu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29748718</idno>
<idno type="pmid">29748718</idno>
<idno type="doi">10.1007/s10856-018-6081-1</idno>
<idno type="wicri:Area/Main/Corpus">000423</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000423</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.</title>
<author>
<name sortKey="Fan, Bingbing" sort="Fan, Bingbing" uniqKey="Fan B" first="Bingbing" last="Fan">Bingbing Fan</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yaya" sort="Li, Yaya" uniqKey="Li Y" first="Yaya" last="Li">Yaya Li</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Fengqi" sort="Han, Fengqi" uniqKey="Han F" first="Fengqi" last="Han">Fengqi Han</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Tingting" sort="Su, Tingting" uniqKey="Su T" first="Tingting" last="Su">Tingting Su</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingguo" sort="Li, Jingguo" uniqKey="Li J" first="Jingguo" last="Li">Jingguo Li</name>
<affiliation>
<nlm:affiliation>Zhengzhou University People's hospital, Zhengzhou University, Zhengzhou, Henan, 450003, China. lijingguo@zzu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Rui" sort="Zhang, Rui" uniqKey="Zhang R" first="Rui" last="Zhang">Rui Zhang</name>
<affiliation>
<nlm:affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China. zhangray@zzu.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Henan Key Laboratory of Aeronautical Material and Application Technology, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450015, China. zhangray@zzu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of materials science. Materials in medicine</title>
<idno type="eISSN">1573-4838</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemical synthesis)</term>
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Escherichia coli (MeSH)</term>
<term>Graphite (chemical synthesis)</term>
<term>Graphite (chemistry)</term>
<term>Green Chemistry Technology (methods)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Microwaves (MeSH)</term>
<term>Nanocomposites (chemistry)</term>
<term>Oxides (chemistry)</term>
<term>Pseudomonas aeruginosa (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Silver Compounds (chemistry)</term>
<term>Staphylococcus aureus (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Graphite</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Graphite</term>
<term>Oxides</term>
<term>Silver</term>
<term>Silver Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanocomposites</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Green Chemistry Technology</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Escherichia coli</term>
<term>Microbial Sensitivity Tests</term>
<term>Microwaves</term>
<term>Pseudomonas aeruginosa</term>
<term>Staphylococcus aureus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present paper represents a facile and rapid synthesis of silver-reduced graphene oxide Ag/rGO (Ag/reduced graphite oxides) composites with the help of microwave irradiation. This is a rapid green route requiring power microwave irradiation only 400 W(30 s) and 200 W (60 s) for the uniform Ag nanoparticles with average diameter of ~10 nm embedded on rGO sheets. In the microwave irradiation process, rGO samples absorb electromagnetic energy to be heated rapidly due to their intrinsic dielectric and conductive losses. Local hot sheets appear in aqueous solution, facilitating homogeneous nucleation, as well as the grain growth of Ag crystallites throughout the rGO sheets. The obtained Ag/rGO composites exhibited significant antibacterial property towards Gram-negative bacteria (E. coli and P. aeruginosa), Gram-positive bacteria (S. aureus and Enterococcus), and white rot fungus. The minimum bactericidal concentration of the Ag /rGO nanocomposite against E. coli was about 1 μg/mL. Strong interaction between Ag/rGO composites and bacteria contributed to the totally non-activity of bacteria. We designed Ag/rGO nanocomposite with excellent antibacterial activities by facile andrapid microwave-assisted green route. In Ag/rGO nanocomposite, the morphology and size distributions of Ag particles anchored on the rGO sheets can controlled via the microwave irradiation power and time. The results suggested that in the microwave field, GO reduced into unique rGO sheets and uniform AgNPs with average size of 12 nm can be decorated on rGO sheets at 30 s and at 200 W, respectively. we successfully demonstrated small silver particles anchored on graphene displayed great antibacterial activities against Gram-negative bacteria (E. coli and P. aeruginosa), Gram-positive bacteria (S. aureus and Enterococcus) and white rot fungus. Ag/rGO nanocomposites may have potential applications as antibacterial agent for daily life.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29748718</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4838</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>May</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Journal of materials science. Materials in medicine</Title>
<ISOAbbreviation>J Mater Sci Mater Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.</ArticleTitle>
<Pagination>
<MedlinePgn>69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10856-018-6081-1</ELocationID>
<Abstract>
<AbstractText>The present paper represents a facile and rapid synthesis of silver-reduced graphene oxide Ag/rGO (Ag/reduced graphite oxides) composites with the help of microwave irradiation. This is a rapid green route requiring power microwave irradiation only 400 W(30 s) and 200 W (60 s) for the uniform Ag nanoparticles with average diameter of ~10 nm embedded on rGO sheets. In the microwave irradiation process, rGO samples absorb electromagnetic energy to be heated rapidly due to their intrinsic dielectric and conductive losses. Local hot sheets appear in aqueous solution, facilitating homogeneous nucleation, as well as the grain growth of Ag crystallites throughout the rGO sheets. The obtained Ag/rGO composites exhibited significant antibacterial property towards Gram-negative bacteria (E. coli and P. aeruginosa), Gram-positive bacteria (S. aureus and Enterococcus), and white rot fungus. The minimum bactericidal concentration of the Ag /rGO nanocomposite against E. coli was about 1 μg/mL. Strong interaction between Ag/rGO composites and bacteria contributed to the totally non-activity of bacteria. We designed Ag/rGO nanocomposite with excellent antibacterial activities by facile andrapid microwave-assisted green route. In Ag/rGO nanocomposite, the morphology and size distributions of Ag particles anchored on the rGO sheets can controlled via the microwave irradiation power and time. The results suggested that in the microwave field, GO reduced into unique rGO sheets and uniform AgNPs with average size of 12 nm can be decorated on rGO sheets at 30 s and at 200 W, respectively. we successfully demonstrated small silver particles anchored on graphene displayed great antibacterial activities against Gram-negative bacteria (E. coli and P. aeruginosa), Gram-positive bacteria (S. aureus and Enterococcus) and white rot fungus. Ag/rGO nanocomposites may have potential applications as antibacterial agent for daily life.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Bingbing</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yaya</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Fengqi</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Tingting</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jingguo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Zhengzhou University People's hospital, Zhengzhou University, Zhengzhou, Henan, 450003, China. lijingguo@zzu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1836-1245</Identifier>
<AffiliationInfo>
<Affiliation>School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China. zhangray@zzu.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Henan Key Laboratory of Aeronautical Material and Application Technology, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450015, China. zhangray@zzu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>51602287</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>51172113</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>17A430006</GrantID>
<Agency>Henan Provincial Department of Science and Technology Research Project</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>21504082</GrantID>
<Agency>National Nature Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Mater Sci Mater Med</MedlineTA>
<NlmUniqueID>9013087</NlmUniqueID>
<ISSNLinking>0957-4530</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018030">Silver Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7782-42-5</RegistryNumber>
<NameOfSubstance UI="D006108">Graphite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>897WUN6G6T</RegistryNumber>
<NameOfSubstance UI="C040225">disilver oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006108" MajorTopicYN="N">Graphite</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055772" MajorTopicYN="N">Green Chemistry Technology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008872" MajorTopicYN="Y">Microwaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053761" MajorTopicYN="N">Nanocomposites</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010087" MajorTopicYN="N">Oxides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018030" MajorTopicYN="N">Silver Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29748718</ArticleId>
<ArticleId IdType="doi">10.1007/s10856-018-6081-1</ArticleId>
<ArticleId IdType="pii">10.1007/s10856-018-6081-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Soc Rev. 2008 Jun;37(6):1127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2010 Mar 22;6(6):711-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20225186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2008 Jan 4;73(1):36-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18062704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale Res Lett. 2012 Sep 28;7(1):541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23020815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6966-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25762191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2007 May;7(5):1406-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17402789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2001 Jul;48 Suppl 1:5-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11420333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2010 Aug;2(8):1358-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20845524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2017 Feb 15;488:26-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27821337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000423 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000423 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29748718
   |texte=   Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29748718" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021