Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transparent Glass with the Growth of Pyramid-Type MoS2 for Highly Efficient Water Disinfection under Visible-Light Irradiation.

Identifieur interne : 000398 ( Main/Corpus ); précédent : 000397; suivant : 000399

Transparent Glass with the Growth of Pyramid-Type MoS2 for Highly Efficient Water Disinfection under Visible-Light Irradiation.

Auteurs : Pengfei Cheng ; Qingwei Zhou ; Xianbiao Hu ; Shaoqiang Su ; Xin Wang ; Mingliang Jin ; Lingling Shui ; Xingsen Gao ; Yanqing Guan ; Richard Nözel ; Guofu Zhou ; Zhang Zhang ; Junming Liu

Source :

RBID : pubmed:29953202

Abstract

Water disinfection is of great importance for human health and daily life. Photocatalysts with high efficiency, environmental protection, and narrow bandgaps are critical for practical water treatment. Here, a general approach is reported for the direct growth of pyramid-type MoS2 (pyramid MoS2) on transparent glass by chemical vapor deposition (CVD). The pyramid MoS2 exhibits a smaller bandgap and higher bactericidal activity than most TiO2-based photocatalysts. The adjustable-bandgap nature of two-dimensional (2-D) MoS2 can harvest a wide spectrum of sunlight and provide more active sites with which to generate reactive oxygen species (ROS) for bacterial death in water. Furthermore, silver (Ag) with several nanometers thicknesses is thermally evaporated on the pyramid MoS2, which can greatly facilitate electron-hole pair separation to generate more ROS and has a certain bactericidal effect. With our established approach, under simulated visible light, more than 99.99% of Escherichia coli can be successfully deactivated in 40 min, with an effective mass per unit of less than 0.7 mg L-1 in a 0.9 wt % NaCl solution. Besides, for the first time, the generation of ROS is confirmed with in situ Raman spectroscopy on pyramid MoS2@Ag glass, and the related bactericidal mechanism is present as well.

DOI: 10.1021/acsami.8b06656
PubMed: 29953202

Links to Exploration step

pubmed:29953202

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transparent Glass with the Growth of Pyramid-Type MoS
<sub>2</sub>
for Highly Efficient Water Disinfection under Visible-Light Irradiation.</title>
<author>
<name sortKey="Cheng, Pengfei" sort="Cheng, Pengfei" uniqKey="Cheng P" first="Pengfei" last="Cheng">Pengfei Cheng</name>
</author>
<author>
<name sortKey="Zhou, Qingwei" sort="Zhou, Qingwei" uniqKey="Zhou Q" first="Qingwei" last="Zhou">Qingwei Zhou</name>
<affiliation>
<nlm:affiliation>Laboratory of Solid State Microstructure , Nanjing University , Nanjing 210093 , PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xianbiao" sort="Hu, Xianbiao" uniqKey="Hu X" first="Xianbiao" last="Hu">Xianbiao Hu</name>
</author>
<author>
<name sortKey="Su, Shaoqiang" sort="Su, Shaoqiang" uniqKey="Su S" first="Shaoqiang" last="Su">Shaoqiang Su</name>
</author>
<author>
<name sortKey="Wang, Xin" sort="Wang, Xin" uniqKey="Wang X" first="Xin" last="Wang">Xin Wang</name>
</author>
<author>
<name sortKey="Jin, Mingliang" sort="Jin, Mingliang" uniqKey="Jin M" first="Mingliang" last="Jin">Mingliang Jin</name>
</author>
<author>
<name sortKey="Shui, Lingling" sort="Shui, Lingling" uniqKey="Shui L" first="Lingling" last="Shui">Lingling Shui</name>
</author>
<author>
<name sortKey="Gao, Xingsen" sort="Gao, Xingsen" uniqKey="Gao X" first="Xingsen" last="Gao">Xingsen Gao</name>
</author>
<author>
<name sortKey="Guan, Yanqing" sort="Guan, Yanqing" uniqKey="Guan Y" first="Yanqing" last="Guan">Yanqing Guan</name>
</author>
<author>
<name sortKey="Nozel, Richard" sort="Nozel, Richard" uniqKey="Nozel R" first="Richard" last="Nözel">Richard Nözel</name>
</author>
<author>
<name sortKey="Zhou, Guofu" sort="Zhou, Guofu" uniqKey="Zhou G" first="Guofu" last="Zhou">Guofu Zhou</name>
</author>
<author>
<name sortKey="Zhang, Zhang" sort="Zhang, Zhang" uniqKey="Zhang Z" first="Zhang" last="Zhang">Zhang Zhang</name>
</author>
<author>
<name sortKey="Liu, Junming" sort="Liu, Junming" uniqKey="Liu J" first="Junming" last="Liu">Junming Liu</name>
<affiliation>
<nlm:affiliation>Laboratory of Solid State Microstructure , Nanjing University , Nanjing 210093 , PR China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29953202</idno>
<idno type="pmid">29953202</idno>
<idno type="doi">10.1021/acsami.8b06656</idno>
<idno type="wicri:Area/Main/Corpus">000398</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000398</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transparent Glass with the Growth of Pyramid-Type MoS
<sub>2</sub>
for Highly Efficient Water Disinfection under Visible-Light Irradiation.</title>
<author>
<name sortKey="Cheng, Pengfei" sort="Cheng, Pengfei" uniqKey="Cheng P" first="Pengfei" last="Cheng">Pengfei Cheng</name>
</author>
<author>
<name sortKey="Zhou, Qingwei" sort="Zhou, Qingwei" uniqKey="Zhou Q" first="Qingwei" last="Zhou">Qingwei Zhou</name>
<affiliation>
<nlm:affiliation>Laboratory of Solid State Microstructure , Nanjing University , Nanjing 210093 , PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xianbiao" sort="Hu, Xianbiao" uniqKey="Hu X" first="Xianbiao" last="Hu">Xianbiao Hu</name>
</author>
<author>
<name sortKey="Su, Shaoqiang" sort="Su, Shaoqiang" uniqKey="Su S" first="Shaoqiang" last="Su">Shaoqiang Su</name>
</author>
<author>
<name sortKey="Wang, Xin" sort="Wang, Xin" uniqKey="Wang X" first="Xin" last="Wang">Xin Wang</name>
</author>
<author>
<name sortKey="Jin, Mingliang" sort="Jin, Mingliang" uniqKey="Jin M" first="Mingliang" last="Jin">Mingliang Jin</name>
</author>
<author>
<name sortKey="Shui, Lingling" sort="Shui, Lingling" uniqKey="Shui L" first="Lingling" last="Shui">Lingling Shui</name>
</author>
<author>
<name sortKey="Gao, Xingsen" sort="Gao, Xingsen" uniqKey="Gao X" first="Xingsen" last="Gao">Xingsen Gao</name>
</author>
<author>
<name sortKey="Guan, Yanqing" sort="Guan, Yanqing" uniqKey="Guan Y" first="Yanqing" last="Guan">Yanqing Guan</name>
</author>
<author>
<name sortKey="Nozel, Richard" sort="Nozel, Richard" uniqKey="Nozel R" first="Richard" last="Nözel">Richard Nözel</name>
</author>
<author>
<name sortKey="Zhou, Guofu" sort="Zhou, Guofu" uniqKey="Zhou G" first="Guofu" last="Zhou">Guofu Zhou</name>
</author>
<author>
<name sortKey="Zhang, Zhang" sort="Zhang, Zhang" uniqKey="Zhang Z" first="Zhang" last="Zhang">Zhang Zhang</name>
</author>
<author>
<name sortKey="Liu, Junming" sort="Liu, Junming" uniqKey="Liu J" first="Junming" last="Liu">Junming Liu</name>
<affiliation>
<nlm:affiliation>Laboratory of Solid State Microstructure , Nanjing University , Nanjing 210093 , PR China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS applied materials & interfaces</title>
<idno type="eISSN">1944-8252</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Water disinfection is of great importance for human health and daily life. Photocatalysts with high efficiency, environmental protection, and narrow bandgaps are critical for practical water treatment. Here, a general approach is reported for the direct growth of pyramid-type MoS
<sub>2</sub>
(pyramid MoS
<sub>2</sub>
) on transparent glass by chemical vapor deposition (CVD). The pyramid MoS
<sub>2</sub>
exhibits a smaller bandgap and higher bactericidal activity than most TiO
<sub>2</sub>
-based photocatalysts. The adjustable-bandgap nature of two-dimensional (2-D) MoS
<sub>2</sub>
can harvest a wide spectrum of sunlight and provide more active sites with which to generate reactive oxygen species (ROS) for bacterial death in water. Furthermore, silver (Ag) with several nanometers thicknesses is thermally evaporated on the pyramid MoS
<sub>2</sub>
, which can greatly facilitate electron-hole pair separation to generate more ROS and has a certain bactericidal effect. With our established approach, under simulated visible light, more than 99.99% of Escherichia coli can be successfully deactivated in 40 min, with an effective mass per unit of less than 0.7 mg L
<sup>-1</sup>
in a 0.9 wt % NaCl solution. Besides, for the first time, the generation of ROS is confirmed with in situ Raman spectroscopy on pyramid MoS
<sub>2</sub>
@Ag glass, and the related bactericidal mechanism is present as well.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29953202</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>07</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>28</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jul</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Transparent Glass with the Growth of Pyramid-Type MoS
<sub>2</sub>
for Highly Efficient Water Disinfection under Visible-Light Irradiation.</ArticleTitle>
<Pagination>
<MedlinePgn>23444-23450</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsami.8b06656</ELocationID>
<Abstract>
<AbstractText>Water disinfection is of great importance for human health and daily life. Photocatalysts with high efficiency, environmental protection, and narrow bandgaps are critical for practical water treatment. Here, a general approach is reported for the direct growth of pyramid-type MoS
<sub>2</sub>
(pyramid MoS
<sub>2</sub>
) on transparent glass by chemical vapor deposition (CVD). The pyramid MoS
<sub>2</sub>
exhibits a smaller bandgap and higher bactericidal activity than most TiO
<sub>2</sub>
-based photocatalysts. The adjustable-bandgap nature of two-dimensional (2-D) MoS
<sub>2</sub>
can harvest a wide spectrum of sunlight and provide more active sites with which to generate reactive oxygen species (ROS) for bacterial death in water. Furthermore, silver (Ag) with several nanometers thicknesses is thermally evaporated on the pyramid MoS
<sub>2</sub>
, which can greatly facilitate electron-hole pair separation to generate more ROS and has a certain bactericidal effect. With our established approach, under simulated visible light, more than 99.99% of Escherichia coli can be successfully deactivated in 40 min, with an effective mass per unit of less than 0.7 mg L
<sup>-1</sup>
in a 0.9 wt % NaCl solution. Besides, for the first time, the generation of ROS is confirmed with in situ Raman spectroscopy on pyramid MoS
<sub>2</sub>
@Ag glass, and the related bactericidal mechanism is present as well.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Pengfei</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2848-8891</Identifier>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Qingwei</ForeName>
<Initials>Q</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9102-1266</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Solid State Microstructure , Nanjing University , Nanjing 210093 , PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Xianbiao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Shaoqiang</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6443-3938</Identifier>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Mingliang</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shui</LastName>
<ForeName>Lingling</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Xingsen</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2725-0785</Identifier>
</Author>
<Author ValidYN="Y">
<LastName>Guan</LastName>
<ForeName>Yanqing</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5560-3998</Identifier>
</Author>
<Author ValidYN="Y">
<LastName>Nözel</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Guofu</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhang</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6287-502X</Identifier>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Junming</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8988-8429</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Solid State Microstructure , Nanjing University , Nanjing 210093 , PR China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">chemical vapor deposition</Keyword>
<Keyword MajorTopicYN="N">photocatalyst</Keyword>
<Keyword MajorTopicYN="N">pyramid-type MoS2</Keyword>
<Keyword MajorTopicYN="N">transparent glass</Keyword>
<Keyword MajorTopicYN="N">water disinfection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29953202</ArticleId>
<ArticleId IdType="doi">10.1021/acsami.8b06656</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000398 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000398 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29953202
   |texte=   Transparent Glass with the Growth of Pyramid-Type MoS2 for Highly Efficient Water Disinfection under Visible-Light Irradiation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29953202" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021