Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release.

Identifieur interne : 000361 ( Main/Corpus ); précédent : 000360; suivant : 000362

Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release.

Auteurs : Wenhao Zhou ; Yangyang Li ; Jianglong Yan ; Pan Xiong ; Qiyao Li ; Yan Cheng ; Yufeng Zheng

Source :

RBID : pubmed:30194357

English descriptors

Abstract

To solve the Ti implants-associated infection and poor osseointegration problems, we have constructed the AgNPs/gentamicin (Gen)-loaded silk fibroin (SF) coating with acceptable antibacterial and osteogenic aptitude. Nevertheless, due to uncontrollably sustained drug release, this bactericidal coating encountered some tricky problems, such as local high Ag concentration, short life-span and potential cytotoxicity. In this work, a chitosan (CS) barrier layer was constructed to prebuilt the SF-based film by two means, dip-coating (DCS) and spin-coating (SCS). Intriguingly, the CS barrier layer constructed by spin-coating highly improved the hydrophilic and protein-absorbed performances. As verified in the release profile, both coatings showed a prolonged and pH-dependent pattern of Ag+ with an accelerated release in acidic condition. Also, the multilayer coating with a SCS barrier layer showed an apparent bacteria-trigged antibacterial and biofilm-inhibited performances, whereas the improvements of antibacterial abilities of DCS coating were limited. The mechanisms could be explained that the pH decrease induced by the attachment and proliferation of bacteria triggered collapse of CS barrier layer, accelerating the release of bactericides. Moreover, benefitted from pH-dependent release behavior of Ag and bioactive SCS layer, functional coatings highly enhanced the initial adhesion, migration and proliferation of preosteoblast MC3T3-E1 cells, and subsequently accelerated osteoblast differentiation (alkaline phosphatase production). A relevant aspect of this work was to demonstrate the essential effect of reasonable construction of self-defensive barrier layer in achieving the balance between the high-efficiency bacterial killing and osteogenic activity, and highlighted its excellent potential in clinical applications.

DOI: 10.1038/s41598-018-31843-2
PubMed: 30194357
PubMed Central: PMC6128911

Links to Exploration step

pubmed:30194357

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release.</title>
<author>
<name sortKey="Zhou, Wenhao" sort="Zhou, Wenhao" uniqKey="Zhou W" first="Wenhao" last="Zhou">Wenhao Zhou</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yangyang" sort="Li, Yangyang" uniqKey="Li Y" first="Yangyang" last="Li">Yangyang Li</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yan, Jianglong" sort="Yan, Jianglong" uniqKey="Yan J" first="Jianglong" last="Yan">Jianglong Yan</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Pan" sort="Xiong, Pan" uniqKey="Xiong P" first="Pan" last="Xiong">Pan Xiong</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Qiyao" sort="Li, Qiyao" uniqKey="Li Q" first="Qiyao" last="Li">Qiyao Li</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA, 16802, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Yan" sort="Cheng, Yan" uniqKey="Cheng Y" first="Yan" last="Cheng">Yan Cheng</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. chengyan@pku.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Yufeng" sort="Zheng, Yufeng" uniqKey="Zheng Y" first="Yufeng" last="Zheng">Yufeng Zheng</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30194357</idno>
<idno type="pmid">30194357</idno>
<idno type="doi">10.1038/s41598-018-31843-2</idno>
<idno type="pmc">PMC6128911</idno>
<idno type="wicri:Area/Main/Corpus">000361</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000361</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release.</title>
<author>
<name sortKey="Zhou, Wenhao" sort="Zhou, Wenhao" uniqKey="Zhou W" first="Wenhao" last="Zhou">Wenhao Zhou</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Yangyang" sort="Li, Yangyang" uniqKey="Li Y" first="Yangyang" last="Li">Yangyang Li</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yan, Jianglong" sort="Yan, Jianglong" uniqKey="Yan J" first="Jianglong" last="Yan">Jianglong Yan</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Pan" sort="Xiong, Pan" uniqKey="Xiong P" first="Pan" last="Xiong">Pan Xiong</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Qiyao" sort="Li, Qiyao" uniqKey="Li Q" first="Qiyao" last="Li">Qiyao Li</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA, 16802, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Yan" sort="Cheng, Yan" uniqKey="Cheng Y" first="Yan" last="Cheng">Yan Cheng</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. chengyan@pku.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Yufeng" sort="Zheng, Yufeng" uniqKey="Zheng Y" first="Yufeng" last="Zheng">Yufeng Zheng</name>
<affiliation>
<nlm:affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing, 100871, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacokinetics)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Biofilms (drug effects)</term>
<term>Biofilms (growth & development)</term>
<term>Chitosan (chemistry)</term>
<term>Chitosan (pharmacokinetics)</term>
<term>Chitosan (pharmacology)</term>
<term>Coated Materials, Biocompatible (chemistry)</term>
<term>Coated Materials, Biocompatible (pharmacokinetics)</term>
<term>Coated Materials, Biocompatible (pharmacology)</term>
<term>Delayed-Action Preparations (chemistry)</term>
<term>Delayed-Action Preparations (pharmacokinetics)</term>
<term>Delayed-Action Preparations (pharmacology)</term>
<term>Gentamicins (chemistry)</term>
<term>Gentamicins (pharmacokinetics)</term>
<term>Gentamicins (pharmacology)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacokinetics)</term>
<term>Silver (pharmacology)</term>
<term>Staphylococcus aureus (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Chitosan</term>
<term>Coated Materials, Biocompatible</term>
<term>Delayed-Action Preparations</term>
<term>Gentamicins</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Chitosan</term>
<term>Coated Materials, Biocompatible</term>
<term>Delayed-Action Preparations</term>
<term>Gentamicins</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Chitosan</term>
<term>Coated Materials, Biocompatible</term>
<term>Delayed-Action Preparations</term>
<term>Gentamicins</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biofilms</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Biofilms</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Staphylococcus aureus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To solve the Ti implants-associated infection and poor osseointegration problems, we have constructed the AgNPs/gentamicin (Gen)-loaded silk fibroin (SF) coating with acceptable antibacterial and osteogenic aptitude. Nevertheless, due to uncontrollably sustained drug release, this bactericidal coating encountered some tricky problems, such as local high Ag concentration, short life-span and potential cytotoxicity. In this work, a chitosan (CS) barrier layer was constructed to prebuilt the SF-based film by two means, dip-coating (DCS) and spin-coating (SCS). Intriguingly, the CS barrier layer constructed by spin-coating highly improved the hydrophilic and protein-absorbed performances. As verified in the release profile, both coatings showed a prolonged and pH-dependent pattern of Ag
<sup>+</sup>
with an accelerated release in acidic condition. Also, the multilayer coating with a SCS barrier layer showed an apparent bacteria-trigged antibacterial and biofilm-inhibited performances, whereas the improvements of antibacterial abilities of DCS coating were limited. The mechanisms could be explained that the pH decrease induced by the attachment and proliferation of bacteria triggered collapse of CS barrier layer, accelerating the release of bactericides. Moreover, benefitted from pH-dependent release behavior of Ag and bioactive SCS layer, functional coatings highly enhanced the initial adhesion, migration and proliferation of preosteoblast MC3T3-E1 cells, and subsequently accelerated osteoblast differentiation (alkaline phosphatase production). A relevant aspect of this work was to demonstrate the essential effect of reasonable construction of self-defensive barrier layer in achieving the balance between the high-efficiency bacterial killing and osteogenic activity, and highlighted its excellent potential in clinical applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30194357</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release.</ArticleTitle>
<Pagination>
<MedlinePgn>13432</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-31843-2</ELocationID>
<Abstract>
<AbstractText>To solve the Ti implants-associated infection and poor osseointegration problems, we have constructed the AgNPs/gentamicin (Gen)-loaded silk fibroin (SF) coating with acceptable antibacterial and osteogenic aptitude. Nevertheless, due to uncontrollably sustained drug release, this bactericidal coating encountered some tricky problems, such as local high Ag concentration, short life-span and potential cytotoxicity. In this work, a chitosan (CS) barrier layer was constructed to prebuilt the SF-based film by two means, dip-coating (DCS) and spin-coating (SCS). Intriguingly, the CS barrier layer constructed by spin-coating highly improved the hydrophilic and protein-absorbed performances. As verified in the release profile, both coatings showed a prolonged and pH-dependent pattern of Ag
<sup>+</sup>
with an accelerated release in acidic condition. Also, the multilayer coating with a SCS barrier layer showed an apparent bacteria-trigged antibacterial and biofilm-inhibited performances, whereas the improvements of antibacterial abilities of DCS coating were limited. The mechanisms could be explained that the pH decrease induced by the attachment and proliferation of bacteria triggered collapse of CS barrier layer, accelerating the release of bactericides. Moreover, benefitted from pH-dependent release behavior of Ag and bioactive SCS layer, functional coatings highly enhanced the initial adhesion, migration and proliferation of preosteoblast MC3T3-E1 cells, and subsequently accelerated osteoblast differentiation (alkaline phosphatase production). A relevant aspect of this work was to demonstrate the essential effect of reasonable construction of self-defensive barrier layer in achieving the balance between the high-efficiency bacterial killing and osteogenic activity, and highlighted its excellent potential in clinical applications.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Wenhao</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yangyang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Jianglong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Pan</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qiyao</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA, 16802, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. chengyan@pku.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Yufeng</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-7402-9979</Identifier>
<AffiliationInfo>
<Affiliation>Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020099">Coated Materials, Biocompatible</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003692">Delayed-Action Preparations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005839">Gentamicins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9012-76-4</RegistryNumber>
<NameOfSubstance UI="D048271">Chitosan</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="Y">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="N">Biofilms</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048271" MajorTopicYN="Y">Chitosan</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020099" MajorTopicYN="Y">Coated Materials, Biocompatible</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003692" MajorTopicYN="N">Delayed-Action Preparations</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005839" MajorTopicYN="Y">Gentamicins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="Y">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30194357</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-31843-2</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-31843-2</ArticleId>
<ArticleId IdType="pmc">PMC6128911</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Materials (Basel). 2016 Mar 03;9(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28773281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2017 Apr 04;12:2673-2687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28435251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2005 Oct;26(30):5983-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Healthc Mater. 2013 Dec;2(12):1606-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23625825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2017 Apr 10;18(4):1134-1144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28257182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27327408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Mar 03;17(3):334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26950123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2010 Jan 31;62(1):83-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19799949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2008 May 31;124(2):142-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2014 Apr 29;30(16):4633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24697600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2014 Sep;35(27):7690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24934644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res A. 2005 Nov 1;75(2):387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16092111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2015 Feb 9;16(2):650-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25585173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2015 Nov;11(8):1949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26282383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2015 Mar;45:64-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25662496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Macromol Biosci. 2015 Aug;15(8):1060-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25914260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24656372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2017 Aug 9;9(31):25830-25846</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28731325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2015 Jan;72:680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25224288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomater Appl. 2014 Sep;29(3):423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24713295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2013 Nov;34(33):8018-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2008 Dec;29(36):4751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18829101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2013 Aug;34(24):5969-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23680363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3499-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26756224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2016 Nov;92:461-466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27431789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mater Chem B. 2017 Jun 28;5(24):4789-4796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29098078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2016 Oct 20;151:172-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27474556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2015 Oct 7;11(37):4870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26183232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res. 2000 Sep 15;51(4):586-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10005-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24938653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2013 Nov;34(34):8533-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2013 Dec 9;14(12):4483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24171643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2016 Jan;75:203-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26513414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 1999 Jun;20(12):1133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10382829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Asian J. 2014 Jan;9(1):319-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115568</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000361 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000361 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30194357
   |texte=   Construction of Self-defensive Antibacterial and Osteogenic AgNPs/Gentamicin Coatings with Chitosan as Nanovalves for Controlled release.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30194357" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021