Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control.

Identifieur interne : 000359 ( Main/Corpus ); précédent : 000358; suivant : 000360

Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control.

Auteurs : Abhishek Kumar Bhardwaj ; Abhishek Shukla ; Shweta Maurya ; Subhash Chandra Singh ; Kailash N. Uttam ; Shanthy Sundaram ; Mohan P. Singh ; Ram Gopal

Source :

RBID : pubmed:30205361

English descriptors

Abstract

It is highly desirable to discover novel green synthesis methods for cheap and scalable synthesis of nanoparticles (NPs) to reduce the negative impact on the environment. But these approaches generally impose great challenge in controlling size, shape, and homogeneity of product NPs. Here in the present study, we report a novel approach enabling direct sunlight and oyster mushroom (Pleurotus citrinopileatus) extract for the photo-biochemical synthesis of Ag NPs. Sunlight of different wavelength was used to control the size and distribution of photo-biochemically produced NPs. Interestingly, it is observed that a smaller wavelength of sunlight produces smaller sized of NPs with a narrow size distribution. For examples; blue sunlight produces colloidal silver NPs with an average diameter of ~ 3.28 nm and 0.72 nm size distribution, while full sunlight produces comparatively larger sized (7.08 nm) NPs with wider (2.92 nm) size distribution. Since present approach uses only direct sunlight, freely available renewable energy source, a cheap biological extract as reducing and capping agent and cheap silver precursor, therefore it is an environment-friendly approach and can be used for the synthesis of NPs at industrial scale. Moreover, the size-dependent bactericidal effect has also been studied against pathogenic, Escherichia coli, bacteria. The minimum inhibitory concentration (MIC) 25 ppm and MBC 30 ppm have been observed for silver NPs of 3.28 nm average diameter.

DOI: 10.1016/j.jphotobiol.2018.08.019
PubMed: 30205361

Links to Exploration step

pubmed:30205361

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control.</title>
<author>
<name sortKey="Bhardwaj, Abhishek Kumar" sort="Bhardwaj, Abhishek Kumar" uniqKey="Bhardwaj A" first="Abhishek Kumar" last="Bhardwaj">Abhishek Kumar Bhardwaj</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Science, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Abhishek" sort="Shukla, Abhishek" uniqKey="Shukla A" first="Abhishek" last="Shukla">Abhishek Shukla</name>
<affiliation>
<nlm:affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maurya, Shweta" sort="Maurya, Shweta" uniqKey="Maurya S" first="Shweta" last="Maurya">Shweta Maurya</name>
<affiliation>
<nlm:affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Subhash Chandra" sort="Singh, Subhash Chandra" uniqKey="Singh S" first="Subhash Chandra" last="Singh">Subhash Chandra Singh</name>
<affiliation>
<nlm:affiliation>High-Intensity Femtosecond Laser Laboratory, The Institute of Optics, University of Rochester, Rochester NY-14623, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Uttam, Kailash N" sort="Uttam, Kailash N" uniqKey="Uttam K" first="Kailash N" last="Uttam">Kailash N. Uttam</name>
<affiliation>
<nlm:affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sundaram, Shanthy" sort="Sundaram, Shanthy" uniqKey="Sundaram S" first="Shanthy" last="Sundaram">Shanthy Sundaram</name>
<affiliation>
<nlm:affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Mohan P" sort="Singh, Mohan P" uniqKey="Singh M" first="Mohan P" last="Singh">Mohan P. Singh</name>
<affiliation>
<nlm:affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gopal, Ram" sort="Gopal, Ram" uniqKey="Gopal R" first="Ram" last="Gopal">Ram Gopal</name>
<affiliation>
<nlm:affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India. Electronic address: profrgopal@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30205361</idno>
<idno type="pmid">30205361</idno>
<idno type="doi">10.1016/j.jphotobiol.2018.08.019</idno>
<idno type="wicri:Area/Main/Corpus">000359</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000359</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control.</title>
<author>
<name sortKey="Bhardwaj, Abhishek Kumar" sort="Bhardwaj, Abhishek Kumar" uniqKey="Bhardwaj A" first="Abhishek Kumar" last="Bhardwaj">Abhishek Kumar Bhardwaj</name>
<affiliation>
<nlm:affiliation>Centre for Environmental Science, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shukla, Abhishek" sort="Shukla, Abhishek" uniqKey="Shukla A" first="Abhishek" last="Shukla">Abhishek Shukla</name>
<affiliation>
<nlm:affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maurya, Shweta" sort="Maurya, Shweta" uniqKey="Maurya S" first="Shweta" last="Maurya">Shweta Maurya</name>
<affiliation>
<nlm:affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Subhash Chandra" sort="Singh, Subhash Chandra" uniqKey="Singh S" first="Subhash Chandra" last="Singh">Subhash Chandra Singh</name>
<affiliation>
<nlm:affiliation>High-Intensity Femtosecond Laser Laboratory, The Institute of Optics, University of Rochester, Rochester NY-14623, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Uttam, Kailash N" sort="Uttam, Kailash N" uniqKey="Uttam K" first="Kailash N" last="Uttam">Kailash N. Uttam</name>
<affiliation>
<nlm:affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sundaram, Shanthy" sort="Sundaram, Shanthy" uniqKey="Sundaram S" first="Shanthy" last="Sundaram">Shanthy Sundaram</name>
<affiliation>
<nlm:affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Mohan P" sort="Singh, Mohan P" uniqKey="Singh M" first="Mohan P" last="Singh">Mohan P. Singh</name>
<affiliation>
<nlm:affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gopal, Ram" sort="Gopal, Ram" uniqKey="Gopal R" first="Ram" last="Gopal">Ram Gopal</name>
<affiliation>
<nlm:affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India. Electronic address: profrgopal@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of photochemistry and photobiology. B, Biology</title>
<idno type="eISSN">1873-2682</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Escherichia coli (drug effects)</term>
<term>Green Chemistry Technology (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal Nanoparticles (toxicity)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Particle Size (MeSH)</term>
<term>Photons (MeSH)</term>
<term>Plant Extracts (chemistry)</term>
<term>Pleurotus (genetics)</term>
<term>Pleurotus (metabolism)</term>
<term>Silver (chemistry)</term>
<term>Spectroscopy, Fourier Transform Infrared (MeSH)</term>
<term>Sunlight (MeSH)</term>
<term>Surface Plasmon Resonance (MeSH)</term>
<term>X-Ray Diffraction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Plant Extracts</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pleurotus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pleurotus</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Green Chemistry Technology</term>
<term>Microbial Sensitivity Tests</term>
<term>Particle Size</term>
<term>Photons</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>Sunlight</term>
<term>Surface Plasmon Resonance</term>
<term>X-Ray Diffraction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is highly desirable to discover novel green synthesis methods for cheap and scalable synthesis of nanoparticles (NPs) to reduce the negative impact on the environment. But these approaches generally impose great challenge in controlling size, shape, and homogeneity of product NPs. Here in the present study, we report a novel approach enabling direct sunlight and oyster mushroom (Pleurotus citrinopileatus) extract for the photo-biochemical synthesis of Ag NPs. Sunlight of different wavelength was used to control the size and distribution of photo-biochemically produced NPs. Interestingly, it is observed that a smaller wavelength of sunlight produces smaller sized of NPs with a narrow size distribution. For examples; blue sunlight produces colloidal silver NPs with an average diameter of ~ 3.28 nm and 0.72 nm size distribution, while full sunlight produces comparatively larger sized (7.08 nm) NPs with wider (2.92 nm) size distribution. Since present approach uses only direct sunlight, freely available renewable energy source, a cheap biological extract as reducing and capping agent and cheap silver precursor, therefore it is an environment-friendly approach and can be used for the synthesis of NPs at industrial scale. Moreover, the size-dependent bactericidal effect has also been studied against pathogenic, Escherichia coli, bacteria. The minimum inhibitory concentration (MIC) 25 ppm and MBC 30 ppm have been observed for silver NPs of 3.28 nm average diameter.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30205361</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2682</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>188</Volume>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of photochemistry and photobiology. B, Biology</Title>
<ISOAbbreviation>J Photochem Photobiol B</ISOAbbreviation>
</Journal>
<ArticleTitle>Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control.</ArticleTitle>
<Pagination>
<MedlinePgn>42-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1011-1344(18)30520-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jphotobiol.2018.08.019</ELocationID>
<Abstract>
<AbstractText>It is highly desirable to discover novel green synthesis methods for cheap and scalable synthesis of nanoparticles (NPs) to reduce the negative impact on the environment. But these approaches generally impose great challenge in controlling size, shape, and homogeneity of product NPs. Here in the present study, we report a novel approach enabling direct sunlight and oyster mushroom (Pleurotus citrinopileatus) extract for the photo-biochemical synthesis of Ag NPs. Sunlight of different wavelength was used to control the size and distribution of photo-biochemically produced NPs. Interestingly, it is observed that a smaller wavelength of sunlight produces smaller sized of NPs with a narrow size distribution. For examples; blue sunlight produces colloidal silver NPs with an average diameter of ~ 3.28 nm and 0.72 nm size distribution, while full sunlight produces comparatively larger sized (7.08 nm) NPs with wider (2.92 nm) size distribution. Since present approach uses only direct sunlight, freely available renewable energy source, a cheap biological extract as reducing and capping agent and cheap silver precursor, therefore it is an environment-friendly approach and can be used for the synthesis of NPs at industrial scale. Moreover, the size-dependent bactericidal effect has also been studied against pathogenic, Escherichia coli, bacteria. The minimum inhibitory concentration (MIC) 25 ppm and MBC 30 ppm have been observed for silver NPs of 3.28 nm average diameter.</AbstractText>
<CopyrightInformation>Copyright © 2018. Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhardwaj</LastName>
<ForeName>Abhishek Kumar</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Centre for Environmental Science, University of Allahabad, Allahabad, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shukla</LastName>
<ForeName>Abhishek</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maurya</LastName>
<ForeName>Shweta</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Subhash Chandra</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>High-Intensity Femtosecond Laser Laboratory, The Institute of Optics, University of Rochester, Rochester NY-14623, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Uttam</LastName>
<ForeName>Kailash N</ForeName>
<Initials>KN</Initials>
<AffiliationInfo>
<Affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sundaram</LastName>
<ForeName>Shanthy</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Mohan P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Center of Biotechnology, University of Allahabad, Allahabad, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gopal</LastName>
<ForeName>Ram</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Laser Spectroscopy and Nanomaterials Lab, Department of Physics, University of Allahabad, Allahabad, India. Electronic address: profrgopal@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>J Photochem Photobiol B</MedlineTA>
<NlmUniqueID>8804966</NlmUniqueID>
<ISSNLinking>1011-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055772" MajorTopicYN="N">Green Chemistry Technology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010316" MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017785" MajorTopicYN="N">Photons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020076" MajorTopicYN="N">Pleurotus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013472" MajorTopicYN="Y">Sunlight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020349" MajorTopicYN="N">Surface Plasmon Resonance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bactericidal</Keyword>
<Keyword MajorTopicYN="N">Plasmon resonance</Keyword>
<Keyword MajorTopicYN="N">Pleurotus species</Keyword>
<Keyword MajorTopicYN="N">Silver NPs</Keyword>
<Keyword MajorTopicYN="N">Sunlight</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30205361</ArticleId>
<ArticleId IdType="pii">S1011-1344(18)30520-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.jphotobiol.2018.08.019</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000359 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000359 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30205361
   |texte=   Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30205361" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021