Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy.

Identifieur interne : 000323 ( Main/Corpus ); précédent : 000322; suivant : 000324

Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy.

Auteurs : Britney L. Hardy ; Seth W. Dickey ; Roger D. Plaut ; Daniel P. Riggins ; Scott Stibitz ; Michael Otto ; D Scott Merrell

Source :

RBID : pubmed:30622190

English descriptors

Abstract

Commensal bacteria in the human nasal cavity are known to suppress opportunistic pathogen colonization by competing for limited space and nutrients. It has become increasingly apparent that some commensal bacteria also produce toxic compounds that directly inhibit or kill incoming competitors. Numerous studies suggest that microbial species-specific interactions can affect human nasal colonization by the opportunistic pathogen Staphylococcus aureus However, the complex and dynamic molecular interactions that mediate these effects on S. aureus nasal colonization are often difficult to study and remain poorly understood. Here, we show that Corynebacterium pseudodiphtheriticum, a common member of the normal nasal microbiota, mediates contact-independent bactericidal activity against S. aureus, including methicillin-resistant S. aureus (MRSA). Bacterial interaction assays revealed that S. aureus isolates that were spontaneously resistant to C. pseudodiphtheriticum killing could be recovered at a low frequency. To better understand the pathways associated with killing and resistance, a S. aureus transposon mutant library was utilized to select for resistant mutant strains. We found that insertional inactivation of agrC, which codes for the sensor kinase of the Agr quorum sensing (Agr QS) system that regulates expression of many virulence factors in S. aureus, conferred resistance to killing. Analysis of the spontaneously resistant S. aureus isolates revealed that each showed decreased expression of the Agr QS components. Targeted analysis of pathways regulated by Agr QS revealed that loss of the phenol-soluble modulins (PSMs), which are effectors of Agr QS, also conferred resistance to bactericidal activity. Transmission electron microscopy analysis revealed that C. pseudodiphtheriticum induced dramatic changes to S. aureus cell surface morphology that likely resulted in cell lysis. Taken together, these data suggest that C. pseudodiphtheriticum-mediated killing of S. aureus requires S. aureus virulence components. While S. aureus can overcome targeted killing, this occurs at the cost of attenuated virulence; loss of Agr QS activity would phenotypically resemble a S. aureus commensal state that would be unlikely to be associated with disease. Commensal competition resulting in dampened virulence of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.IMPORTANCE While some individuals are nasally colonized with S. aureus, the underlying factors that determine colonization are not understood. There is increasing evidence that indicates that resident bacteria play a role; some commensal species can eradicate S. aureus from the nasal cavity. Among these, Corynebacterium pseudodiphtheriticum can eliminate S. aureus from the human nose. We sought to understand this phenomenon at a molecular level and found that C. pseudodiphtheriticum produces a factor(s) that specifically kills S. aureus While resistant S. aureus isolates were recovered at a low frequency, resistance came at the cost of attenuated virulence in these strains. Molecular dissection of the specific strategies used by C. pseudodiphtheriticum to kill S. aureus could lead to the development of novel treatments or therapies. Furthermore, commensal competition that requires virulence components of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.

DOI: 10.1128/mBio.02491-18
PubMed: 30622190
PubMed Central: PMC6325251

Links to Exploration step

pubmed:30622190

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy.</title>
<author>
<name sortKey="Hardy, Britney L" sort="Hardy, Britney L" uniqKey="Hardy B" first="Britney L" last="Hardy">Britney L. Hardy</name>
<affiliation>
<nlm:affiliation>F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dickey, Seth W" sort="Dickey, Seth W" uniqKey="Dickey S" first="Seth W" last="Dickey">Seth W. Dickey</name>
<affiliation>
<nlm:affiliation>Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plaut, Roger D" sort="Plaut, Roger D" uniqKey="Plaut R" first="Roger D" last="Plaut">Roger D. Plaut</name>
<affiliation>
<nlm:affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riggins, Daniel P" sort="Riggins, Daniel P" uniqKey="Riggins D" first="Daniel P" last="Riggins">Daniel P. Riggins</name>
<affiliation>
<nlm:affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stibitz, Scott" sort="Stibitz, Scott" uniqKey="Stibitz S" first="Scott" last="Stibitz">Scott Stibitz</name>
<affiliation>
<nlm:affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Otto, Michael" sort="Otto, Michael" uniqKey="Otto M" first="Michael" last="Otto">Michael Otto</name>
<affiliation>
<nlm:affiliation>Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merrell, D Scott" sort="Merrell, D Scott" uniqKey="Merrell D" first="D Scott" last="Merrell">D Scott Merrell</name>
<affiliation>
<nlm:affiliation>F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA douglas.merrell@usuhs.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30622190</idno>
<idno type="pmid">30622190</idno>
<idno type="doi">10.1128/mBio.02491-18</idno>
<idno type="pmc">PMC6325251</idno>
<idno type="wicri:Area/Main/Corpus">000323</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000323</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy.</title>
<author>
<name sortKey="Hardy, Britney L" sort="Hardy, Britney L" uniqKey="Hardy B" first="Britney L" last="Hardy">Britney L. Hardy</name>
<affiliation>
<nlm:affiliation>F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dickey, Seth W" sort="Dickey, Seth W" uniqKey="Dickey S" first="Seth W" last="Dickey">Seth W. Dickey</name>
<affiliation>
<nlm:affiliation>Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plaut, Roger D" sort="Plaut, Roger D" uniqKey="Plaut R" first="Roger D" last="Plaut">Roger D. Plaut</name>
<affiliation>
<nlm:affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riggins, Daniel P" sort="Riggins, Daniel P" uniqKey="Riggins D" first="Daniel P" last="Riggins">Daniel P. Riggins</name>
<affiliation>
<nlm:affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stibitz, Scott" sort="Stibitz, Scott" uniqKey="Stibitz S" first="Scott" last="Stibitz">Scott Stibitz</name>
<affiliation>
<nlm:affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Otto, Michael" sort="Otto, Michael" uniqKey="Otto M" first="Michael" last="Otto">Michael Otto</name>
<affiliation>
<nlm:affiliation>Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merrell, D Scott" sort="Merrell, D Scott" uniqKey="Merrell D" first="D Scott" last="Merrell">D Scott Merrell</name>
<affiliation>
<nlm:affiliation>F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA douglas.merrell@usuhs.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antibiosis (MeSH)</term>
<term>Bacterial Toxins (genetics)</term>
<term>Bacterial Toxins (metabolism)</term>
<term>Corynebacterium (growth & development)</term>
<term>Corynebacterium (isolation & purification)</term>
<term>DNA Transposable Elements (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Microbial Viability (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Mutagenesis, Insertional (MeSH)</term>
<term>Nasal Cavity (microbiology)</term>
<term>Staphylococcus aureus (genetics)</term>
<term>Staphylococcus aureus (growth & development)</term>
<term>Staphylococcus aureus (isolation & purification)</term>
<term>Staphylococcus aureus (ultrastructure)</term>
<term>Virulence Factors (genetics)</term>
<term>Virulence Factors (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Toxins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Toxins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Corynebacterium</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Corynebacterium</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Nasal Cavity</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Antibiosis</term>
<term>DNA Transposable Elements</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Humans</term>
<term>Microbial Viability</term>
<term>Microscopy, Electron, Transmission</term>
<term>Mutagenesis, Insertional</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Commensal bacteria in the human nasal cavity are known to suppress opportunistic pathogen colonization by competing for limited space and nutrients. It has become increasingly apparent that some commensal bacteria also produce toxic compounds that directly inhibit or kill incoming competitors. Numerous studies suggest that microbial species-specific interactions can affect human nasal colonization by the opportunistic pathogen
<i>Staphylococcus aureus</i>
However, the complex and dynamic molecular interactions that mediate these effects on
<i>S. aureus</i>
nasal colonization are often difficult to study and remain poorly understood. Here, we show that
<i>Corynebacterium pseudodiphtheriticum</i>
, a common member of the normal nasal microbiota, mediates contact-independent bactericidal activity against
<i>S. aureus</i>
, including methicillin-resistant
<i>S. aureus</i>
(MRSA). Bacterial interaction assays revealed that
<i>S. aureus</i>
isolates that were spontaneously resistant to
<i>C. pseudodiphtheriticum</i>
killing could be recovered at a low frequency. To better understand the pathways associated with killing and resistance, a
<i>S. aureus</i>
transposon mutant library was utilized to select for resistant mutant strains. We found that insertional inactivation of
<i>agrC</i>
, which codes for the sensor kinase of the Agr quorum sensing (Agr QS) system that regulates expression of many virulence factors in
<i>S. aureus</i>
, conferred resistance to killing. Analysis of the spontaneously resistant
<i>S. aureus</i>
isolates revealed that each showed decreased expression of the Agr QS components. Targeted analysis of pathways regulated by Agr QS revealed that loss of the phenol-soluble modulins (PSMs), which are effectors of Agr QS, also conferred resistance to bactericidal activity. Transmission electron microscopy analysis revealed that
<i>C. pseudodiphtheriticum</i>
induced dramatic changes to
<i>S. aureus</i>
cell surface morphology that likely resulted in cell lysis. Taken together, these data suggest that
<i>C. pseudodiphtheriticum</i>
-mediated killing of
<i>S. aureus</i>
requires
<i>S. aureus</i>
virulence components. While
<i>S. aureus</i>
can overcome targeted killing, this occurs at the cost of attenuated virulence; loss of Agr QS activity would phenotypically resemble a
<i>S. aureus</i>
commensal state that would be unlikely to be associated with disease. Commensal competition resulting in dampened virulence of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.
<b>IMPORTANCE</b>
While some individuals are nasally colonized with
<i>S. aureus</i>
, the underlying factors that determine colonization are not understood. There is increasing evidence that indicates that resident bacteria play a role; some commensal species can eradicate
<i>S. aureus</i>
from the nasal cavity. Among these,
<i>Corynebacterium pseudodiphtheriticum</i>
can eliminate
<i>S. aureus</i>
from the human nose. We sought to understand this phenomenon at a molecular level and found that
<i>C. pseudodiphtheriticum</i>
produces a factor(s) that specifically kills
<i>S. aureus</i>
While resistant
<i>S. aureus</i>
isolates were recovered at a low frequency, resistance came at the cost of attenuated virulence in these strains. Molecular dissection of the specific strategies used by
<i>C. pseudodiphtheriticum</i>
to kill
<i>S. aureus</i>
could lead to the development of novel treatments or therapies. Furthermore, commensal competition that requires virulence components of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30622190</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e02491-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.02491-18</ELocationID>
<Abstract>
<AbstractText>Commensal bacteria in the human nasal cavity are known to suppress opportunistic pathogen colonization by competing for limited space and nutrients. It has become increasingly apparent that some commensal bacteria also produce toxic compounds that directly inhibit or kill incoming competitors. Numerous studies suggest that microbial species-specific interactions can affect human nasal colonization by the opportunistic pathogen
<i>Staphylococcus aureus</i>
However, the complex and dynamic molecular interactions that mediate these effects on
<i>S. aureus</i>
nasal colonization are often difficult to study and remain poorly understood. Here, we show that
<i>Corynebacterium pseudodiphtheriticum</i>
, a common member of the normal nasal microbiota, mediates contact-independent bactericidal activity against
<i>S. aureus</i>
, including methicillin-resistant
<i>S. aureus</i>
(MRSA). Bacterial interaction assays revealed that
<i>S. aureus</i>
isolates that were spontaneously resistant to
<i>C. pseudodiphtheriticum</i>
killing could be recovered at a low frequency. To better understand the pathways associated with killing and resistance, a
<i>S. aureus</i>
transposon mutant library was utilized to select for resistant mutant strains. We found that insertional inactivation of
<i>agrC</i>
, which codes for the sensor kinase of the Agr quorum sensing (Agr QS) system that regulates expression of many virulence factors in
<i>S. aureus</i>
, conferred resistance to killing. Analysis of the spontaneously resistant
<i>S. aureus</i>
isolates revealed that each showed decreased expression of the Agr QS components. Targeted analysis of pathways regulated by Agr QS revealed that loss of the phenol-soluble modulins (PSMs), which are effectors of Agr QS, also conferred resistance to bactericidal activity. Transmission electron microscopy analysis revealed that
<i>C. pseudodiphtheriticum</i>
induced dramatic changes to
<i>S. aureus</i>
cell surface morphology that likely resulted in cell lysis. Taken together, these data suggest that
<i>C. pseudodiphtheriticum</i>
-mediated killing of
<i>S. aureus</i>
requires
<i>S. aureus</i>
virulence components. While
<i>S. aureus</i>
can overcome targeted killing, this occurs at the cost of attenuated virulence; loss of Agr QS activity would phenotypically resemble a
<i>S. aureus</i>
commensal state that would be unlikely to be associated with disease. Commensal competition resulting in dampened virulence of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.
<b>IMPORTANCE</b>
While some individuals are nasally colonized with
<i>S. aureus</i>
, the underlying factors that determine colonization are not understood. There is increasing evidence that indicates that resident bacteria play a role; some commensal species can eradicate
<i>S. aureus</i>
from the nasal cavity. Among these,
<i>Corynebacterium pseudodiphtheriticum</i>
can eliminate
<i>S. aureus</i>
from the human nose. We sought to understand this phenomenon at a molecular level and found that
<i>C. pseudodiphtheriticum</i>
produces a factor(s) that specifically kills
<i>S. aureus</i>
While resistant
<i>S. aureus</i>
isolates were recovered at a low frequency, resistance came at the cost of attenuated virulence in these strains. Molecular dissection of the specific strategies used by
<i>C. pseudodiphtheriticum</i>
to kill
<i>S. aureus</i>
could lead to the development of novel treatments or therapies. Furthermore, commensal competition that requires virulence components of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.</AbstractText>
<CopyrightInformation>Copyright © 2019 Hardy et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hardy</LastName>
<ForeName>Britney L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dickey</LastName>
<ForeName>Seth W</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plaut</LastName>
<ForeName>Roger D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riggins</LastName>
<ForeName>Daniel P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stibitz</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Otto</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Merrell</LastName>
<ForeName>D Scott</ForeName>
<Initials>DS</Initials>
<Identifier Source="ORCID">0000-0001-7095-5177</Identifier>
<AffiliationInfo>
<Affiliation>F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA douglas.merrell@usuhs.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ZIA AI000904</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001427">Bacterial Toxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C025971">staphylococcal delta toxin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000898" MajorTopicYN="Y">Antibiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001427" MajorTopicYN="N">Bacterial Toxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003352" MajorTopicYN="N">Corynebacterium</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009296" MajorTopicYN="N">Nasal Cavity</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Corynebacterium</Keyword>
<Keyword MajorTopicYN="Y">Staphylococcus aureus </Keyword>
<Keyword MajorTopicYN="Y">commensal bacteria</Keyword>
<Keyword MajorTopicYN="Y">nasal microbiota</Keyword>
<Keyword MajorTopicYN="Y">polymicrobial interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30622190</ArticleId>
<ArticleId IdType="pii">mBio.02491-18</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.02491-18</ArticleId>
<ArticleId IdType="pmc">PMC6325251</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2017 Dec 13;22(6):746-756.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29199097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Med J. 1959 Oct 10;2(5153):658-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13844927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Probiotics Antimicrob Proteins. 2013 Dec;5(4):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26783069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2011 Sep-Oct;2(5):445-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21921685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2013 Feb 12;4(1):e00537-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23404398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Aug 17;7:1230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27582729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1996 Apr 1;137(2-3):279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8998998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Mar;186(6):1838-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Dec 11;14(6):631-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24331461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2008 Mar 1;46(5):752-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18220477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jul;7(7):e1002104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1993 Sep;61(9):3879-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8359909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2013 Jun 11;29(23):7017-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23688391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2008 Mar;68(3):208-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2017 Jun 1;5(22):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28572323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;416:103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18392963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 May;111(9):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12727914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Nov;70(11):6887-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2014 Sep 02;5(5):e01729-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25182329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Sep 15;175(6):3907-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16148137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 1999 Jul;44(1):43-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10459809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 Oct 24;2:16194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27775684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2009 Jul;64(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jan;72(1):327-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16391061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Jan;70(1):127-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11748173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MAbs. 2010 May-Jun;2(3):212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 12;8(8):e70538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Feb;70(2):631-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11796592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Infect Control. 2012 Apr;40(3):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2007 Jul;70(1):186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 1999 Sep 22-29;282(12):1123-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10501104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2007 Dec;13(12):1840-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2016 Oct 5;1(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27747300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Jun;8(6):3029-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19368345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Oct;191(20):6363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Jan 05;7(1):e01725-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26733066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1970 Jan;75(1):93-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4243578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2001 Apr 21;357(9264):1225-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:541-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22232686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2000 Feb;44(2):127-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10662563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Chem Biol. 2016 Feb 18;23(2):214-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26971873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 Feb;83(2):802-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25486991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2010 Jun 22;1(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infection. 2005 Feb;33(1):3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15750752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2007 Nov 1;45(9):1132-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17918074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Jun;158(Pt 6):1504-1512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Oct;562(7728):532-537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30305736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Mar;19(3):364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23396209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2010;64:143-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20825344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2005 Dec;5(12):751-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16310147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 20;465(7296):346-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20485435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2010 Sep 1;51(5):585-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20662715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2000 Jul;146 ( Pt 7):1547-1553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10878119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2007 Oct 17;298(15):1763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2015 Feb 17;6(1):e02272-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25691592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Dec;194(23):6490-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23002221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2006 Mar 4;367(9512):731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2017 Feb 22;9(378):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Jul 27;535(7613):511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27466123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Aug 23;8:1613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28878760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2017 Jan;54:72-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27915107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Apr 06;5(4):e10040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Mar;193(5):1267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2001 Jan 4;344(1):11-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11136954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2011 May;79(5):1927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2014 Dec;22(12):676-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25300477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2004 Sep 15;190(6):1140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2013 Sep;81(9):3227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23798534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2007 Dec;13(12):1510-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2013 Dec;349(2):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24164684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):18-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12513972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 07;5:11997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26149474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Oct;193(19):5231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000323 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000323 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30622190
   |texte=   Corynebacterium pseudodiphtheriticum Exploits Staphylococcus aureus Virulence Components in a Novel Polymicrobial Defense Strategy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30622190" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021