Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photocatalytic Protein Damage by Silver Nanoparticles Circumvents Bacterial Stress Response and Multidrug Resistance.

Identifieur interne : 000271 ( Main/Corpus ); précédent : 000270; suivant : 000272

Photocatalytic Protein Damage by Silver Nanoparticles Circumvents Bacterial Stress Response and Multidrug Resistance.

Auteurs : Tianyuan Shi ; Qiuxia Wei ; Zhen Wang ; Gong Zhang ; Xuesong Sun ; Qing-Yu He

Source :

RBID : pubmed:31043515

English descriptors

Abstract

Silver nanoparticles (AgNPs) are known for their broad-spectrum antibacterial properties, especially against antibiotic-resistant bacteria. However, the bactericidal mechanism of AgNPs remains unclear. In this study, we found that the bactericidal ability of AgNPs is induced by light. In contrast to previous postulates, visible light is unable to trigger silver ion release from AgNPs or to promote AgNPs to induce reactive oxygen species (ROS) in Escherichia coli In fact, we revealed that light excited AgNPs to induce protein aggregation in a concentration-dependent manner in E. coli, indicating that the bactericidal ability of AgNPs relies on the light-catalyzed oxidation of cellular proteins via direct binding to proteins, which was verified by fluorescence spectra. AgNPs likely absorb the light energy and transfer it to the proteins, leading to the oxidation of proteins and thus promoting the death of the bacteria. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics revealed that the bacteria failed to develop effective resistance to the light-excited AgNPs. This direct physical mechanism is unlikely to be counteracted by any known drug resistance mechanisms of bacteria and therefore may serve as a last resort against drug resistance. This mechanism also provides a practical hint regarding the antimicrobial application of AgNPs-light exposure improves the efficacy of AgNPs.IMPORTANCE Although silver nanoparticles (AgNPs) are well known for their antibacterial properties, the mechanism by which they kill bacterial cells remains a topic of debate. In this study, we uncovered the bactericidal mechanism of AgNPs, which is induced by light. We tested the efficacy of AgNPs against a panel of antimicrobial-resistant pathogens as well as Escherichia coli under conditions of light and darkness and revealed that light excited the AgNPs to promote protein aggregation within the bacterial cells. Our report makes a significant contribution to the literature because this mechanism bypasses microbial drug resistance mechanisms, thus presenting a viable option for the treatment of multidrug-resistant bacteria.

DOI: 10.1128/mSphere.00175-19
PubMed: 31043515
PubMed Central: PMC6495337

Links to Exploration step

pubmed:31043515

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photocatalytic Protein Damage by Silver Nanoparticles Circumvents Bacterial Stress Response and Multidrug Resistance.</title>
<author>
<name sortKey="Shi, Tianyuan" sort="Shi, Tianyuan" uniqKey="Shi T" first="Tianyuan" last="Shi">Tianyuan Shi</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wei, Qiuxia" sort="Wei, Qiuxia" uniqKey="Wei Q" first="Qiuxia" last="Wei">Qiuxia Wei</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhen" sort="Wang, Zhen" uniqKey="Wang Z" first="Zhen" last="Wang">Zhen Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Gong" sort="Zhang, Gong" uniqKey="Zhang G" first="Gong" last="Zhang">Gong Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Xuesong" sort="Sun, Xuesong" uniqKey="Sun X" first="Xuesong" last="Sun">Xuesong Sun</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China tsunxs@jnu.edu.cn tqyhe@jnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="He, Qing Yu" sort="He, Qing Yu" uniqKey="He Q" first="Qing-Yu" last="He">Qing-Yu He</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China tsunxs@jnu.edu.cn tqyhe@jnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31043515</idno>
<idno type="pmid">31043515</idno>
<idno type="doi">10.1128/mSphere.00175-19</idno>
<idno type="pmc">PMC6495337</idno>
<idno type="wicri:Area/Main/Corpus">000271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000271</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photocatalytic Protein Damage by Silver Nanoparticles Circumvents Bacterial Stress Response and Multidrug Resistance.</title>
<author>
<name sortKey="Shi, Tianyuan" sort="Shi, Tianyuan" uniqKey="Shi T" first="Tianyuan" last="Shi">Tianyuan Shi</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wei, Qiuxia" sort="Wei, Qiuxia" uniqKey="Wei Q" first="Qiuxia" last="Wei">Qiuxia Wei</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhen" sort="Wang, Zhen" uniqKey="Wang Z" first="Zhen" last="Wang">Zhen Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Gong" sort="Zhang, Gong" uniqKey="Zhang G" first="Gong" last="Zhang">Gong Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Xuesong" sort="Sun, Xuesong" uniqKey="Sun X" first="Xuesong" last="Sun">Xuesong Sun</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China tsunxs@jnu.edu.cn tqyhe@jnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="He, Qing Yu" sort="He, Qing Yu" uniqKey="He Q" first="Qing-Yu" last="He">Qing-Yu He</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China tsunxs@jnu.edu.cn tqyhe@jnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Catalysis (MeSH)</term>
<term>Drug Resistance, Multiple, Bacterial (radiation effects)</term>
<term>Escherichia coli (drug effects)</term>
<term>Escherichia coli (radiation effects)</term>
<term>Light (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Protein Aggregates (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Drug Resistance, Multiple, Bacterial</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Light</term>
<term>Microbial Sensitivity Tests</term>
<term>Oxidative Stress</term>
<term>Protein Aggregates</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silver nanoparticles (AgNPs) are known for their broad-spectrum antibacterial properties, especially against antibiotic-resistant bacteria. However, the bactericidal mechanism of AgNPs remains unclear. In this study, we found that the bactericidal ability of AgNPs is induced by light. In contrast to previous postulates, visible light is unable to trigger silver ion release from AgNPs or to promote AgNPs to induce reactive oxygen species (ROS) in
<i>Escherichia coli</i>
In fact, we revealed that light excited AgNPs to induce protein aggregation in a concentration-dependent manner in
<i>E. coli</i>
, indicating that the bactericidal ability of AgNPs relies on the light-catalyzed oxidation of cellular proteins via direct binding to proteins, which was verified by fluorescence spectra. AgNPs likely absorb the light energy and transfer it to the proteins, leading to the oxidation of proteins and thus promoting the death of the bacteria. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics revealed that the bacteria failed to develop effective resistance to the light-excited AgNPs. This direct physical mechanism is unlikely to be counteracted by any known drug resistance mechanisms of bacteria and therefore may serve as a last resort against drug resistance. This mechanism also provides a practical hint regarding the antimicrobial application of AgNPs-light exposure improves the efficacy of AgNPs.
<b>IMPORTANCE</b>
Although silver nanoparticles (AgNPs) are well known for their antibacterial properties, the mechanism by which they kill bacterial cells remains a topic of debate. In this study, we uncovered the bactericidal mechanism of AgNPs, which is induced by light. We tested the efficacy of AgNPs against a panel of antimicrobial-resistant pathogens as well as
<i>Escherichia coli</i>
under conditions of light and darkness and revealed that light excited the AgNPs to promote protein aggregation within the bacterial cells. Our report makes a significant contribution to the literature because this mechanism bypasses microbial drug resistance mechanisms, thus presenting a viable option for the treatment of multidrug-resistant bacteria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31043515</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2379-5042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Photocatalytic Protein Damage by Silver Nanoparticles Circumvents Bacterial Stress Response and Multidrug Resistance.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00175-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00175-19</ELocationID>
<Abstract>
<AbstractText>Silver nanoparticles (AgNPs) are known for their broad-spectrum antibacterial properties, especially against antibiotic-resistant bacteria. However, the bactericidal mechanism of AgNPs remains unclear. In this study, we found that the bactericidal ability of AgNPs is induced by light. In contrast to previous postulates, visible light is unable to trigger silver ion release from AgNPs or to promote AgNPs to induce reactive oxygen species (ROS) in
<i>Escherichia coli</i>
In fact, we revealed that light excited AgNPs to induce protein aggregation in a concentration-dependent manner in
<i>E. coli</i>
, indicating that the bactericidal ability of AgNPs relies on the light-catalyzed oxidation of cellular proteins via direct binding to proteins, which was verified by fluorescence spectra. AgNPs likely absorb the light energy and transfer it to the proteins, leading to the oxidation of proteins and thus promoting the death of the bacteria. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics revealed that the bacteria failed to develop effective resistance to the light-excited AgNPs. This direct physical mechanism is unlikely to be counteracted by any known drug resistance mechanisms of bacteria and therefore may serve as a last resort against drug resistance. This mechanism also provides a practical hint regarding the antimicrobial application of AgNPs-light exposure improves the efficacy of AgNPs.
<b>IMPORTANCE</b>
Although silver nanoparticles (AgNPs) are well known for their antibacterial properties, the mechanism by which they kill bacterial cells remains a topic of debate. In this study, we uncovered the bactericidal mechanism of AgNPs, which is induced by light. We tested the efficacy of AgNPs against a panel of antimicrobial-resistant pathogens as well as
<i>Escherichia coli</i>
under conditions of light and darkness and revealed that light excited the AgNPs to promote protein aggregation within the bacterial cells. Our report makes a significant contribution to the literature because this mechanism bypasses microbial drug resistance mechanisms, thus presenting a viable option for the treatment of multidrug-resistant bacteria.</AbstractText>
<CopyrightInformation>Copyright © 2019 Shi et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Shi</LastName>
<ForeName>Tianyuan</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Wei</LastName>
<ForeName>Qiuxia</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhen</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Zhang</LastName>
<ForeName>Gong</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Sun</LastName>
<ForeName>Xuesong</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">0000-0002-5425-321X</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China tsunxs@jnu.edu.cn tqyhe@jnu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>He</LastName>
<ForeName>Qing-Yu</ForeName>
<Initials>QY</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China tsunxs@jnu.edu.cn tqyhe@jnu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D066329">Protein Aggregates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024901" MajorTopicYN="N">Drug Resistance, Multiple, Bacterial</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066329" MajorTopicYN="N">Protein Aggregates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">antibiotic resistance</Keyword>
<Keyword MajorTopicYN="Y">iTRAQ</Keyword>
<Keyword MajorTopicYN="Y">light</Keyword>
<Keyword MajorTopicYN="Y">protein aggregation</Keyword>
<Keyword MajorTopicYN="Y">silver nanoparticles</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31043515</ArticleId>
<ArticleId IdType="pii">4/3/e00175-19</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00175-19</ArticleId>
<ArticleId IdType="pmc">PMC6495337</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Mar;73(6):1712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2007 Mar;3(1):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Aug 10;424(4):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22771582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2011 Nov 1;88(1):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21798729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2015 Sep;80:455-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26188293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2010 Sep;74(3):417-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2016 Apr;12(3):789-799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26724539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2011 Jun;66(6):1255-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Jun;8(6):401-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2018;19(6):525-536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27829349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2015 Jun;51:216-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25842128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2013 Aug 1;108:255-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23563291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanobiotechnology. 2011 Nov 10;9:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22071005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 21;257(5073):1064-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1509257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2017 Mar 15;490:802-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27997848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2009 Jun;394(4):1011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2011 Feb;24(1):135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20938718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2007 May;12(4):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17353996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Sep 4;14(9):3693-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26108252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2014 Nov 20;21(11):1423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25442374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2014 Feb;100:122-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24290895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2016 Aug 17;64(32):6375-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27458754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jan;85(4):1115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19669753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res. 2000 Dec 15;52(4):662-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11033548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Feb 03;7:78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26870030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2016 Sep 1;473(17):2545-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27574021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2015 Apr;43(2):157-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2015 Jan;13(1):42-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25435309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Jun 19;11(6):e1005302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26090660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2014 Oct;18:56-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25254623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jan 24;118:349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2014 Mar;98(5):1951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24407450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2014 Mar 25;8(3):2161-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24512182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Mar 30;20(4):5574-615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25830789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2013 Sep;27(6):1644-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23608358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photomed Laser Surg. 2006 Dec;24(6):684-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17199466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2009 Jan-Feb;27(1):76-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2012 Aug 8;12(8):4271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22765771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Apr;80(8):2573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24532071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2013 Aug 21;5(16):7328-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23821237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2015 Oct 27;31(42):11605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26447769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Feb 6;130(5):1676-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18189392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2008 Jun;4(6):746-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18528852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2004 Jul 1;275(1):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotoxicology. 2014 Aug;8 Suppl 1:177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24392705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Oct 20;126(41):13200-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15479055</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000271 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000271 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31043515
   |texte=   Photocatalytic Protein Damage by Silver Nanoparticles Circumvents Bacterial Stress Response and Multidrug Resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31043515" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021