Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from Escherichia coli and Selected Salivary Bacteria.

Identifieur interne : 000200 ( Main/Corpus ); précédent : 000199; suivant : 000201

Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from Escherichia coli and Selected Salivary Bacteria.

Auteurs : Fernanda Monedeiro ; Paweł Pomastowski ; Maciej Milanowski ; Tomasz Ligor ; Bogusław Buszewski

Source :

RBID : pubmed:31752439

Abstract

Escherichia coli and salivary Klebsiella oxytoca and Staphylococcus saccharolyticus were subjected to different concentrations of silver nanoparticles (AgNPs), namely: 12.5, 50, and 100 µg mL-1. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) spectra were acquired after specified periods: 0, 1, 4, and 12 h. For study of volatile metabolites, headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME-GC-MS) was employed-AgNPs were added to bacteria cultures and the headspace was analyzed immediately and after 12 h of incubation. Principal components analysis provided discrimination between clusters of protein profiles belonging to different strains. Canonical correlation, network analysis, and multiple linear regression approach revealed that dimethyl disulfide, dimethyl trisulfide, 2-heptanone, and dodecanal (related to the metabolism of sulfur-containing amino acids and fatty acids synthesis) are exemplary molecular indicators, whose response variation deeply correlated to the interaction with bacteria. Therefore, such species can serve as biomarkers of the agent's effectiveness. The present investigation pointed out that the used approaches can be useful in the monitoring of response to therapeutic treatment based on AgNPs. Furthermore, biochemical mechanisms enrolled in the bactericidal action of nanoparticles can be applied in the development of new agents with enhanced properties.

DOI: 10.3390/jcm8112024
PubMed: 31752439
PubMed Central: PMC6912796

Links to Exploration step

pubmed:31752439

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from
<i>Escherichia coli</i>
and Selected Salivary Bacteria.</title>
<author>
<name sortKey="Monedeiro, Fernanda" sort="Monedeiro, Fernanda" uniqKey="Monedeiro F" first="Fernanda" last="Monedeiro">Fernanda Monedeiro</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pomastowski, Pawel" sort="Pomastowski, Pawel" uniqKey="Pomastowski P" first="Paweł" last="Pomastowski">Paweł Pomastowski</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Milanowski, Maciej" sort="Milanowski, Maciej" uniqKey="Milanowski M" first="Maciej" last="Milanowski">Maciej Milanowski</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ligor, Tomasz" sort="Ligor, Tomasz" uniqKey="Ligor T" first="Tomasz" last="Ligor">Tomasz Ligor</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buszewski, Boguslaw" sort="Buszewski, Boguslaw" uniqKey="Buszewski B" first="Bogusław" last="Buszewski">Bogusław Buszewski</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31752439</idno>
<idno type="pmid">31752439</idno>
<idno type="doi">10.3390/jcm8112024</idno>
<idno type="pmc">PMC6912796</idno>
<idno type="wicri:Area/Main/Corpus">000200</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000200</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from
<i>Escherichia coli</i>
and Selected Salivary Bacteria.</title>
<author>
<name sortKey="Monedeiro, Fernanda" sort="Monedeiro, Fernanda" uniqKey="Monedeiro F" first="Fernanda" last="Monedeiro">Fernanda Monedeiro</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pomastowski, Pawel" sort="Pomastowski, Pawel" uniqKey="Pomastowski P" first="Paweł" last="Pomastowski">Paweł Pomastowski</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Milanowski, Maciej" sort="Milanowski, Maciej" uniqKey="Milanowski M" first="Maciej" last="Milanowski">Maciej Milanowski</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ligor, Tomasz" sort="Ligor, Tomasz" uniqKey="Ligor T" first="Tomasz" last="Ligor">Tomasz Ligor</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buszewski, Boguslaw" sort="Buszewski, Boguslaw" uniqKey="Buszewski B" first="Bogusław" last="Buszewski">Bogusław Buszewski</name>
<affiliation>
<nlm:affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of clinical medicine</title>
<idno type="ISSN">2077-0383</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Escherichia coli</i>
and salivary
<i>Klebsiella oxytoca</i>
and
<i>Staphylococcus saccharolyticus</i>
were subjected to different concentrations of silver nanoparticles (AgNPs), namely: 12.5, 50, and 100 µg mL
<sup>-1</sup>
. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) spectra were acquired after specified periods: 0, 1, 4, and 12 h. For study of volatile metabolites, headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME-GC-MS) was employed-AgNPs were added to bacteria cultures and the headspace was analyzed immediately and after 12 h of incubation. Principal components analysis provided discrimination between clusters of protein profiles belonging to different strains. Canonical correlation, network analysis, and multiple linear regression approach revealed that dimethyl disulfide, dimethyl trisulfide, 2-heptanone, and dodecanal (related to the metabolism of sulfur-containing amino acids and fatty acids synthesis) are exemplary molecular indicators, whose response variation deeply correlated to the interaction with bacteria. Therefore, such species can serve as biomarkers of the agent's effectiveness. The present investigation pointed out that the used approaches can be useful in the monitoring of response to therapeutic treatment based on AgNPs. Furthermore, biochemical mechanisms enrolled in the bactericidal action of nanoparticles can be applied in the development of new agents with enhanced properties.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31752439</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2077-0383</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Journal of clinical medicine</Title>
<ISOAbbreviation>J Clin Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from
<i>Escherichia coli</i>
and Selected Salivary Bacteria.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E2024</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/jcm8112024</ELocationID>
<Abstract>
<AbstractText>
<i>Escherichia coli</i>
and salivary
<i>Klebsiella oxytoca</i>
and
<i>Staphylococcus saccharolyticus</i>
were subjected to different concentrations of silver nanoparticles (AgNPs), namely: 12.5, 50, and 100 µg mL
<sup>-1</sup>
. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) spectra were acquired after specified periods: 0, 1, 4, and 12 h. For study of volatile metabolites, headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME-GC-MS) was employed-AgNPs were added to bacteria cultures and the headspace was analyzed immediately and after 12 h of incubation. Principal components analysis provided discrimination between clusters of protein profiles belonging to different strains. Canonical correlation, network analysis, and multiple linear regression approach revealed that dimethyl disulfide, dimethyl trisulfide, 2-heptanone, and dodecanal (related to the metabolism of sulfur-containing amino acids and fatty acids synthesis) are exemplary molecular indicators, whose response variation deeply correlated to the interaction with bacteria. Therefore, such species can serve as biomarkers of the agent's effectiveness. The present investigation pointed out that the used approaches can be useful in the monitoring of response to therapeutic treatment based on AgNPs. Furthermore, biochemical mechanisms enrolled in the bactericidal action of nanoparticles can be applied in the development of new agents with enhanced properties.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Monedeiro</LastName>
<ForeName>Fernanda</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pomastowski</LastName>
<ForeName>Paweł</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">0000-0002-1594-0623</Identifier>
<AffiliationInfo>
<Affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Milanowski</LastName>
<ForeName>Maciej</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-3713-4099</Identifier>
<AffiliationInfo>
<Affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ligor</LastName>
<ForeName>Tomasz</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buszewski</LastName>
<ForeName>Bogusław</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Opus 14 project No. 2017/27/B/ST4/02628 (2018-2021)</GrantID>
<Agency>Narodowe Centrum Nauki</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>J Clin Med</MedlineTA>
<NlmUniqueID>101606588</NlmUniqueID>
<ISSNLinking>2077-0383</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">HS-SPME-GC-MS</Keyword>
<Keyword MajorTopicYN="N">MALDI-TOF MS</Keyword>
<Keyword MajorTopicYN="N">VOCs</Keyword>
<Keyword MajorTopicYN="N">bacteria</Keyword>
<Keyword MajorTopicYN="N">silver nanoparticles</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31752439</ArticleId>
<ArticleId IdType="pii">jcm8112024</ArticleId>
<ArticleId IdType="doi">10.3390/jcm8112024</ArticleId>
<ArticleId IdType="pmc">PMC6912796</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Mar;93(6):2603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22327321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Apr;5(4):916-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Jun 1;868(1-2):88-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Springerplus. 2016 Jun 24;5(1):861</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27386310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacology. 2012;90(5-6):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23037005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2006 Aug 24;110(33):16248-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosensors (Basel). 2019 Feb 08;9(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30744051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cancer. 2017 Jul 6;17(1):472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28683725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Chromatogr. 2007 Jun;21(6):553-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Nov 16;7:1831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnology. 2005 Oct;16(10):2346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20818017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Mar 12;10:478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30915059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2016 Mar;37(5-6):752-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26763104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enferm Infecc Microbiol Clin. 2017 May;35(5):303-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28108122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Breath Res. 2016 Nov 30;10(4):046014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27902490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2016 Jul;155:329-335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2004 Aug;54(2):546-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioprocess Biosyst Eng. 2016 Apr;39(4):575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26796584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale Res Lett. 2014 Oct 11;9(1):565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25435831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2007 Aug;24(4):814-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Aug 05;6:791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 2007 Aug;383(1-2):30-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jan 21;20(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30669621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Dent. 2009 Aug;22(4):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19824562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Breath Res. 2014 Jun;8(2):027106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24737039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2018 Sep 4;90(17):10400-10408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30091898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Anal Chem. 2017 May 4;47(3):251-266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27905825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Forensic Sci. 2013 Jan;58(1):29-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22803833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2011 Jun;400(7):1817-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21598081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2015 Jan;170:147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25189671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2000 Jul 1;72(13):2741-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10905302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Aug 30;7:1359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27625644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2016 May;120(5):1250-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26864807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Apr 26;9:756</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29755424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2012 Nov;113(5):1097-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22830412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Forensic Sci Int. 2013 Mar 10;226(1-3):173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23369788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mass Spectrom. 2013 Jan;48(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23303755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioprocess Biosyst Eng. 2016 May;39(5):759-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26857369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2010 Mar;14(3):e184-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1999 Apr;49 Pt 2:489-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2016 Apr;12(3):789-799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26724539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Dec;158(Pt 12):3044-3053</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23059976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Sep;36(9):1035-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20809147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Transl Med. 2013 Jul 10;2:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23842518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2016 Oct;36:216-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27530963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Jun 20;12:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22716902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 2010 Dec 14;411(23-24):1841-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20719239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr Sci. 2014 Apr;52(4):363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23661670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2010 Feb;6(1):103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19447203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Breath Res. 2017 Sep 07;11(3):036012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28649963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2017 Aug;38(16):2081-2088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28429817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Anal Chem (Palo Alto Calif). 2014;7:455-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25014347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2011 Dec 7;136(23):5077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22005882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 Mar 15;44(6):2163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20158230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33590</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22479418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2004 Jul 1;275(1):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2014 Aug;27(4):673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24961696</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000200 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000200 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31752439
   |texte=   Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from Escherichia coli and Selected Salivary Bacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31752439" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021