Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Facile synthesis of rGO-MoS2-Ag nanocomposites with long-term antimicrobial activities.

Identifieur interne : 000196 ( Main/Corpus ); précédent : 000195; suivant : 000197

Facile synthesis of rGO-MoS2-Ag nanocomposites with long-term antimicrobial activities.

Auteurs : Jingchen Li ; Jie Zheng ; Yadong Yu ; Zhen Su ; Lihui Zhang ; Xiaojun Chen

Source :

RBID : pubmed:31770730

English descriptors

Abstract

The abuse of antibiotics has led to the emergence of numerous super resistant bacteria, which pose a serious threat to public health. Developing nanomaterials with novel modes of bactericidal activity offers the promise of fighting pathogens without the risk of causing drug resistances. Here, we used reduced graphene oxide (rGO), bulk molybdenum disulfide (MoS2) and silver nitrate (AgNO3) to synthesize a ternary nanocomposite, rGO-MoS2-Ag, via a simple one-pot method. The resulting rGO-MoS2-Ag presented as crumpled and sheet-like structures decorated with Ag nanoparticles. The minimum inhibitory concentration and minimum bactericidal concentration of rGO-MoS2-Ag against Escherichia coli were 50 and 100 μg ml-1, while Staphylococcus aureus reacted only to twice higher concentrations of 100 and 200 μg ml-1, respectively. Notably, rGO-MoS2-Ag exhibited better antibacterial activity towards E. coli and S. aureus than rGO, MoS2, or rGO-MoS2. This result can be attributed to the excellent performance of rGO-MoS2-Ag in destroying the bacterial cell membrane and inducing the generation of reactive oxygen species. The Ag+ ion release of rGO-MoS2-Ag was delayed, endowing the nanocomposite with long-term antibacterial capabilities and better biosafety. Our results indicate that the as-prepared rGO-MoS2-Ag has promising potential for application in biomedicine and public health.

DOI: 10.1088/1361-6528/ab5ba7
PubMed: 31770730

Links to Exploration step

pubmed:31770730

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Facile synthesis of rGO-MoS
<sub>2</sub>
-Ag nanocomposites with long-term antimicrobial activities.</title>
<author>
<name sortKey="Li, Jingchen" sort="Li, Jingchen" uniqKey="Li J" first="Jingchen" last="Li">Jingchen Li</name>
<affiliation>
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jie" sort="Zheng, Jie" uniqKey="Zheng J" first="Jie" last="Zheng">Jie Zheng</name>
</author>
<author>
<name sortKey="Yu, Yadong" sort="Yu, Yadong" uniqKey="Yu Y" first="Yadong" last="Yu">Yadong Yu</name>
</author>
<author>
<name sortKey="Su, Zhen" sort="Su, Zhen" uniqKey="Su Z" first="Zhen" last="Su">Zhen Su</name>
</author>
<author>
<name sortKey="Zhang, Lihui" sort="Zhang, Lihui" uniqKey="Zhang L" first="Lihui" last="Zhang">Lihui Zhang</name>
</author>
<author>
<name sortKey="Chen, Xiaojun" sort="Chen, Xiaojun" uniqKey="Chen X" first="Xiaojun" last="Chen">Xiaojun Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31770730</idno>
<idno type="pmid">31770730</idno>
<idno type="doi">10.1088/1361-6528/ab5ba7</idno>
<idno type="wicri:Area/Main/Corpus">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000196</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Facile synthesis of rGO-MoS
<sub>2</sub>
-Ag nanocomposites with long-term antimicrobial activities.</title>
<author>
<name sortKey="Li, Jingchen" sort="Li, Jingchen" uniqKey="Li J" first="Jingchen" last="Li">Jingchen Li</name>
<affiliation>
<nlm:affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jie" sort="Zheng, Jie" uniqKey="Zheng J" first="Jie" last="Zheng">Jie Zheng</name>
</author>
<author>
<name sortKey="Yu, Yadong" sort="Yu, Yadong" uniqKey="Yu Y" first="Yadong" last="Yu">Yadong Yu</name>
</author>
<author>
<name sortKey="Su, Zhen" sort="Su, Zhen" uniqKey="Su Z" first="Zhen" last="Su">Zhen Su</name>
</author>
<author>
<name sortKey="Zhang, Lihui" sort="Zhang, Lihui" uniqKey="Zhang L" first="Lihui" last="Zhang">Lihui Zhang</name>
</author>
<author>
<name sortKey="Chen, Xiaojun" sort="Chen, Xiaojun" uniqKey="Chen X" first="Xiaojun" last="Chen">Xiaojun Chen</name>
</author>
</analytic>
<series>
<title level="j">Nanotechnology</title>
<idno type="eISSN">1361-6528</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemical synthesis)</term>
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Cell Membrane (drug effects)</term>
<term>Disulfides (chemistry)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Escherichia coli (drug effects)</term>
<term>Escherichia coli (metabolism)</term>
<term>Graphite (chemistry)</term>
<term>Metal Nanoparticles (MeSH)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Molybdenum (chemistry)</term>
<term>Nanocomposites (chemistry)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Silver Nitrate (MeSH)</term>
<term>Staphylococcus aureus (drug effects)</term>
<term>Staphylococcus aureus (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Disulfides</term>
<term>Graphite</term>
<term>Molybdenum</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanocomposites</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Membrane</term>
<term>Escherichia coli</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dose-Response Relationship, Drug</term>
<term>Metal Nanoparticles</term>
<term>Microbial Sensitivity Tests</term>
<term>Silver Nitrate</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The abuse of antibiotics has led to the emergence of numerous super resistant bacteria, which pose a serious threat to public health. Developing nanomaterials with novel modes of bactericidal activity offers the promise of fighting pathogens without the risk of causing drug resistances. Here, we used reduced graphene oxide (rGO), bulk molybdenum disulfide (MoS
<sub>2</sub>
) and silver nitrate (AgNO
<sub>3</sub>
) to synthesize a ternary nanocomposite, rGO-MoS
<sub>2</sub>
-Ag, via a simple one-pot method. The resulting rGO-MoS
<sub>2</sub>
-Ag presented as crumpled and sheet-like structures decorated with Ag nanoparticles. The minimum inhibitory concentration and minimum bactericidal concentration of rGO-MoS
<sub>2</sub>
-Ag against Escherichia coli were 50 and 100 μg ml
<sup>-1</sup>
, while Staphylococcus aureus reacted only to twice higher concentrations of 100 and 200 μg ml
<sup>-1</sup>
, respectively. Notably, rGO-MoS
<sub>2</sub>
-Ag exhibited better antibacterial activity towards E. coli and S. aureus than rGO, MoS
<sub>2</sub>
, or rGO-MoS
<sub>2</sub>
. This result can be attributed to the excellent performance of rGO-MoS
<sub>2</sub>
-Ag in destroying the bacterial cell membrane and inducing the generation of reactive oxygen species. The Ag
<sup>+</sup>
ion release of rGO-MoS
<sub>2</sub>
-Ag was delayed, endowing the nanocomposite with long-term antibacterial capabilities and better biosafety. Our results indicate that the as-prepared rGO-MoS
<sub>2</sub>
-Ag has promising potential for application in biomedicine and public health.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31770730</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6528</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>31</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Nanotechnology</Title>
<ISOAbbreviation>Nanotechnology</ISOAbbreviation>
</Journal>
<ArticleTitle>Facile synthesis of rGO-MoS
<sub>2</sub>
-Ag nanocomposites with long-term antimicrobial activities.</ArticleTitle>
<Pagination>
<MedlinePgn>125101</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/1361-6528/ab5ba7</ELocationID>
<Abstract>
<AbstractText>The abuse of antibiotics has led to the emergence of numerous super resistant bacteria, which pose a serious threat to public health. Developing nanomaterials with novel modes of bactericidal activity offers the promise of fighting pathogens without the risk of causing drug resistances. Here, we used reduced graphene oxide (rGO), bulk molybdenum disulfide (MoS
<sub>2</sub>
) and silver nitrate (AgNO
<sub>3</sub>
) to synthesize a ternary nanocomposite, rGO-MoS
<sub>2</sub>
-Ag, via a simple one-pot method. The resulting rGO-MoS
<sub>2</sub>
-Ag presented as crumpled and sheet-like structures decorated with Ag nanoparticles. The minimum inhibitory concentration and minimum bactericidal concentration of rGO-MoS
<sub>2</sub>
-Ag against Escherichia coli were 50 and 100 μg ml
<sup>-1</sup>
, while Staphylococcus aureus reacted only to twice higher concentrations of 100 and 200 μg ml
<sup>-1</sup>
, respectively. Notably, rGO-MoS
<sub>2</sub>
-Ag exhibited better antibacterial activity towards E. coli and S. aureus than rGO, MoS
<sub>2</sub>
, or rGO-MoS
<sub>2</sub>
. This result can be attributed to the excellent performance of rGO-MoS
<sub>2</sub>
-Ag in destroying the bacterial cell membrane and inducing the generation of reactive oxygen species. The Ag
<sup>+</sup>
ion release of rGO-MoS
<sub>2</sub>
-Ag was delayed, endowing the nanocomposite with long-term antibacterial capabilities and better biosafety. Our results indicate that the as-prepared rGO-MoS
<sub>2</sub>
-Ag has promising potential for application in biomedicine and public health.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jingchen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Yadong</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Zhen</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lihui</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiaojun</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotechnology</MedlineTA>
<NlmUniqueID>101241272</NlmUniqueID>
<ISSNLinking>0957-4484</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000628730">graphene oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7782-42-5</RegistryNumber>
<NameOfSubstance UI="D006108">Graphite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>81AH48963U</RegistryNumber>
<NameOfSubstance UI="D008982">Molybdenum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>95IT3W8JZE</RegistryNumber>
<NameOfSubstance UI="D012835">Silver Nitrate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ZC8B4P503V</RegistryNumber>
<NameOfSubstance UI="C082964">molybdenum disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006108" MajorTopicYN="N">Graphite</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008982" MajorTopicYN="N">Molybdenum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053761" MajorTopicYN="N">Nanocomposites</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012835" MajorTopicYN="N">Silver Nitrate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31770730</ArticleId>
<ArticleId IdType="doi">10.1088/1361-6528/ab5ba7</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000196 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000196 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31770730
   |texte=   Facile synthesis of rGO-MoS2-Ag nanocomposites with long-term antimicrobial activities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31770730" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021