Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication.

Identifieur interne : 000149 ( Main/Corpus ); précédent : 000148; suivant : 000150

Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication.

Auteurs : Ye Yang ; Xizheng Wu ; Chao He ; Jianbo Huang ; Shiqi Yin ; Mi Zhou ; Lang Ma ; Weifeng Zhao ; Li Qiu ; Chong Cheng ; Changsheng Zhao

Source :

RBID : pubmed:32129070

English descriptors

Abstract

Recent emerged metal-organic frameworks (MOFs), as superior drug carriers, provide novel strategies to combat pathogenic bacterial infections. Although various antibacterial metal ions can be easily introduced in MOFs for chemical bacterial ablation, such a single-model bactericidal method suffers from high-dose use, limited antibacterial efficiency, and slow sterilization rate. Hence, developing a dual bactericidal system is urgently required. Herein, we report an MOF/Ag-derived nanocomposite with efficient metal-ion-releasing capability and robust photo-to-thermal conversion effect for synergistic sterilization. The MOF-derived nanocarbon consisting of metallic zinc and a graphitic-like carbon framework is first synthesized, and then Ag nanoparticles (AgNPs) are evenly introduced via the displacement reaction between Zn and Ag+. Upon near-infrared irradiation, the fabricated nanoagents can generate massive heat to destroy bacterial membranes. Meanwhile, abundant Zn2+ and Ag+ ions are released to make chemical damage to bacterial intracellular substances. Systematic antibacterial experiments reveal that such dual-antibacterial effort can endow the nanoagents with nearly 100% bactericidal ratio for highly concentrated bacteria at a very low dosage (0.16 mg/mL). Furthermore, the nanoagents exhibit less cytotoxicity, which provides potential possibilities for the applications in the biological field. In vivo assessment indicates that the nanocomposites can realize rapid and safe wound sterilization and are expected to be an alternative to antibiotics. Overall, we present an easily fabricated structure-engineered nanocomposite with chemical and photothermal effects for broad-spectrum bacterial sterilization.

DOI: 10.1021/acsami.0c01666
PubMed: 32129070

Links to Exploration step

pubmed:32129070

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication.</title>
<author>
<name sortKey="Yang, Ye" sort="Yang, Ye" uniqKey="Yang Y" first="Ye" last="Yang">Ye Yang</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xizheng" sort="Wu, Xizheng" uniqKey="Wu X" first="Xizheng" last="Wu">Xizheng Wu</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="He, Chao" sort="He, Chao" uniqKey="He C" first="Chao" last="He">Chao He</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jianbo" sort="Huang, Jianbo" uniqKey="Huang J" first="Jianbo" last="Huang">Jianbo Huang</name>
<affiliation>
<nlm:affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Shiqi" sort="Yin, Shiqi" uniqKey="Yin S" first="Shiqi" last="Yin">Shiqi Yin</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Mi" sort="Zhou, Mi" uniqKey="Zhou M" first="Mi" last="Zhou">Mi Zhou</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Lang" sort="Ma, Lang" uniqKey="Ma L" first="Lang" last="Ma">Lang Ma</name>
<affiliation>
<nlm:affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Weifeng" sort="Zhao, Weifeng" uniqKey="Zhao W" first="Weifeng" last="Zhao">Weifeng Zhao</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Li" sort="Qiu, Li" uniqKey="Qiu L" first="Li" last="Qiu">Li Qiu</name>
<affiliation>
<nlm:affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Chong" sort="Cheng, Chong" uniqKey="Cheng C" first="Chong" last="Cheng">Chong Cheng</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Changsheng" sort="Zhao, Changsheng" uniqKey="Zhao C" first="Changsheng" last="Zhao">Changsheng Zhao</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32129070</idno>
<idno type="pmid">32129070</idno>
<idno type="doi">10.1021/acsami.0c01666</idno>
<idno type="wicri:Area/Main/Corpus">000149</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000149</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication.</title>
<author>
<name sortKey="Yang, Ye" sort="Yang, Ye" uniqKey="Yang Y" first="Ye" last="Yang">Ye Yang</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xizheng" sort="Wu, Xizheng" uniqKey="Wu X" first="Xizheng" last="Wu">Xizheng Wu</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="He, Chao" sort="He, Chao" uniqKey="He C" first="Chao" last="He">Chao He</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jianbo" sort="Huang, Jianbo" uniqKey="Huang J" first="Jianbo" last="Huang">Jianbo Huang</name>
<affiliation>
<nlm:affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Shiqi" sort="Yin, Shiqi" uniqKey="Yin S" first="Shiqi" last="Yin">Shiqi Yin</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Mi" sort="Zhou, Mi" uniqKey="Zhou M" first="Mi" last="Zhou">Mi Zhou</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Lang" sort="Ma, Lang" uniqKey="Ma L" first="Lang" last="Ma">Lang Ma</name>
<affiliation>
<nlm:affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Weifeng" sort="Zhao, Weifeng" uniqKey="Zhao W" first="Weifeng" last="Zhao">Weifeng Zhao</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Li" sort="Qiu, Li" uniqKey="Qiu L" first="Li" last="Qiu">Li Qiu</name>
<affiliation>
<nlm:affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Chong" sort="Cheng, Chong" uniqKey="Cheng C" first="Chong" last="Cheng">Chong Cheng</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Changsheng" sort="Zhao, Changsheng" uniqKey="Zhao C" first="Changsheng" last="Zhao">Changsheng Zhao</name>
<affiliation>
<nlm:affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS applied materials & interfaces</title>
<idno type="eISSN">1944-8252</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Infections (drug therapy)</term>
<term>Bacterial Infections (microbiology)</term>
<term>Escherichia coli (drug effects)</term>
<term>Escherichia coli (pathogenicity)</term>
<term>Humans (MeSH)</term>
<term>Infrared Rays (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal-Organic Frameworks (chemistry)</term>
<term>Metal-Organic Frameworks (pharmacology)</term>
<term>Nanocomposites (chemistry)</term>
<term>Silver (chemistry)</term>
<term>Staphylococcus aureus (drug effects)</term>
<term>Staphylococcus aureus (pathogenicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Metal-Organic Frameworks</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanocomposites</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Bacterial Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Bacterial Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Escherichia coli</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Metal-Organic Frameworks</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Infrared Rays</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent emerged metal-organic frameworks (MOFs), as superior drug carriers, provide novel strategies to combat pathogenic bacterial infections. Although various antibacterial metal ions can be easily introduced in MOFs for chemical bacterial ablation, such a single-model bactericidal method suffers from high-dose use, limited antibacterial efficiency, and slow sterilization rate. Hence, developing a dual bactericidal system is urgently required. Herein, we report an MOF/Ag-derived nanocomposite with efficient metal-ion-releasing capability and robust photo-to-thermal conversion effect for synergistic sterilization. The MOF-derived nanocarbon consisting of metallic zinc and a graphitic-like carbon framework is first synthesized, and then Ag nanoparticles (AgNPs) are evenly introduced via the displacement reaction between Zn and Ag
<sup>+</sup>
. Upon near-infrared irradiation, the fabricated nanoagents can generate massive heat to destroy bacterial membranes. Meanwhile, abundant Zn
<sup>2+</sup>
and Ag
<sup>+</sup>
ions are released to make chemical damage to bacterial intracellular substances. Systematic antibacterial experiments reveal that such dual-antibacterial effort can endow the nanoagents with nearly 100% bactericidal ratio for highly concentrated bacteria at a very low dosage (0.16 mg/mL). Furthermore, the nanoagents exhibit less cytotoxicity, which provides potential possibilities for the applications in the biological field.
<i>In vivo</i>
assessment indicates that the nanocomposites can realize rapid and safe wound sterilization and are expected to be an alternative to antibiotics. Overall, we present an easily fabricated structure-engineered nanocomposite with chemical and photothermal effects for broad-spectrum bacterial sterilization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32129070</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication.</ArticleTitle>
<Pagination>
<MedlinePgn>13698-13708</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsami.0c01666</ELocationID>
<Abstract>
<AbstractText>Recent emerged metal-organic frameworks (MOFs), as superior drug carriers, provide novel strategies to combat pathogenic bacterial infections. Although various antibacterial metal ions can be easily introduced in MOFs for chemical bacterial ablation, such a single-model bactericidal method suffers from high-dose use, limited antibacterial efficiency, and slow sterilization rate. Hence, developing a dual bactericidal system is urgently required. Herein, we report an MOF/Ag-derived nanocomposite with efficient metal-ion-releasing capability and robust photo-to-thermal conversion effect for synergistic sterilization. The MOF-derived nanocarbon consisting of metallic zinc and a graphitic-like carbon framework is first synthesized, and then Ag nanoparticles (AgNPs) are evenly introduced via the displacement reaction between Zn and Ag
<sup>+</sup>
. Upon near-infrared irradiation, the fabricated nanoagents can generate massive heat to destroy bacterial membranes. Meanwhile, abundant Zn
<sup>2+</sup>
and Ag
<sup>+</sup>
ions are released to make chemical damage to bacterial intracellular substances. Systematic antibacterial experiments reveal that such dual-antibacterial effort can endow the nanoagents with nearly 100% bactericidal ratio for highly concentrated bacteria at a very low dosage (0.16 mg/mL). Furthermore, the nanoagents exhibit less cytotoxicity, which provides potential possibilities for the applications in the biological field.
<i>In vivo</i>
assessment indicates that the nanocomposites can realize rapid and safe wound sterilization and are expected to be an alternative to antibiotics. Overall, we present an easily fabricated structure-engineered nanocomposite with chemical and photothermal effects for broad-spectrum bacterial sterilization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ye</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Xizheng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jianbo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Shiqi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Mi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Lang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Weifeng</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2689-0251</Identifier>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2685-9799</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Chong</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6872-2240</Identifier>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Changsheng</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4619-3499</Identifier>
<AffiliationInfo>
<Affiliation>College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000073396">Metal-Organic Frameworks</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001424" MajorTopicYN="N">Bacterial Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007259" MajorTopicYN="N">Infrared Rays</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073396" MajorTopicYN="N">Metal-Organic Frameworks</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053761" MajorTopicYN="N">Nanocomposites</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bacterial sterilization</Keyword>
<Keyword MajorTopicYN="N">hybrid nanoagents</Keyword>
<Keyword MajorTopicYN="N">metal−organic framework</Keyword>
<Keyword MajorTopicYN="N">photothermal therapy</Keyword>
<Keyword MajorTopicYN="N">wound disinfection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32129070</ArticleId>
<ArticleId IdType="doi">10.1021/acsami.0c01666</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000149 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000149 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32129070
   |texte=   Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32129070" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021