Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide.

Identifieur interne : 000138 ( Main/Corpus ); précédent : 000137; suivant : 000139

Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide.

Auteurs : Yirui Lv ; Li Li ; Ping Yin ; Ting Lei

Source :

RBID : pubmed:32202585

English descriptors

Abstract

Copper oxide (CuO) nanoparticles (NPs) doped with Mg2+, Zn2+ and Ce4+ ions were prepared by a hydrothermal method. SEM images revealed a spherical surface morphology for all doped CuO NPs. XRD patterns confirm that all doped CuO NPs exhibit a monoclinic structure at a dopant concentration of less than 7%, and when the doping content is up to 10%, MgO, ZnO and CeO2 phases are formed. ICP analysis indicated that these three doping elements have a promoting effect on the release of Cu2+ from the doped CuO NPs. Moreover, investigation of the antibacterial activity of the doped CuO NPs reveals that the doped CuO nanoparticles show effective antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) compared to the Gram-negative Escherichia coli (E. coli) bacterium. Among them, 5% Mg, 3% Zn and 5% Ce-doped CuO NPs exhibit the best bactericidal effect at a very low concentration of 0.05 mg mL-1, and the highest bacteriostatic rate can reach 99.9%. The improved antibacterial activity of the doped CuO NPs was attributed to the synergetic effect of ROS generation and the inactivation of proteins in the bacterial cells by the binding of the Cu2+ ions to the bacterial cell surface. This work highlights the potential of the doped CuO NPs to replace silver for antibiotic-free antibacterial applications in wound dressings, bone implants and dental fillings.

DOI: 10.1039/d0dt00201a
PubMed: 32202585

Links to Exploration step

pubmed:32202585

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide.</title>
<author>
<name sortKey="Lv, Yirui" sort="Lv, Yirui" uniqKey="Lv Y" first="Yirui" last="Lv">Yirui Lv</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Li" sort="Li, Li" uniqKey="Li L" first="Li" last="Li">Li Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Ping" sort="Yin, Ping" uniqKey="Yin P" first="Ping" last="Yin">Ping Yin</name>
<affiliation>
<nlm:affiliation>Xiangya Hospital, Central South University, Changsha, 410008, China. yinpingoral@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lei, Ting" sort="Lei, Ting" uniqKey="Lei T" first="Ting" last="Lei">Ting Lei</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32202585</idno>
<idno type="pmid">32202585</idno>
<idno type="doi">10.1039/d0dt00201a</idno>
<idno type="wicri:Area/Main/Corpus">000138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000138</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide.</title>
<author>
<name sortKey="Lv, Yirui" sort="Lv, Yirui" uniqKey="Lv Y" first="Yirui" last="Lv">Yirui Lv</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Li" sort="Li, Li" uniqKey="Li L" first="Li" last="Li">Li Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Ping" sort="Yin, Ping" uniqKey="Yin P" first="Ping" last="Yin">Ping Yin</name>
<affiliation>
<nlm:affiliation>Xiangya Hospital, Central South University, Changsha, 410008, China. yinpingoral@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lei, Ting" sort="Lei, Ting" uniqKey="Lei T" first="Ting" last="Lei">Ting Lei</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Dalton transactions (Cambridge, England : 2003)</title>
<idno type="eISSN">1477-9234</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemical synthesis)</term>
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Copper (chemistry)</term>
<term>Copper (pharmacology)</term>
<term>Escherichia coli (drug effects)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>Nanoparticles (chemistry)</term>
<term>Particle Size (MeSH)</term>
<term>Staphylococcus aureus (drug effects)</term>
<term>Surface Properties (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Copper</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Copper</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microbial Sensitivity Tests</term>
<term>Molecular Structure</term>
<term>Particle Size</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Copper oxide (CuO) nanoparticles (NPs) doped with Mg2+, Zn2+ and Ce4+ ions were prepared by a hydrothermal method. SEM images revealed a spherical surface morphology for all doped CuO NPs. XRD patterns confirm that all doped CuO NPs exhibit a monoclinic structure at a dopant concentration of less than 7%, and when the doping content is up to 10%, MgO, ZnO and CeO2 phases are formed. ICP analysis indicated that these three doping elements have a promoting effect on the release of Cu2+ from the doped CuO NPs. Moreover, investigation of the antibacterial activity of the doped CuO NPs reveals that the doped CuO nanoparticles show effective antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) compared to the Gram-negative Escherichia coli (E. coli) bacterium. Among them, 5% Mg, 3% Zn and 5% Ce-doped CuO NPs exhibit the best bactericidal effect at a very low concentration of 0.05 mg mL-1, and the highest bacteriostatic rate can reach 99.9%. The improved antibacterial activity of the doped CuO NPs was attributed to the synergetic effect of ROS generation and the inactivation of proteins in the bacterial cells by the binding of the Cu2+ ions to the bacterial cell surface. This work highlights the potential of the doped CuO NPs to replace silver for antibiotic-free antibacterial applications in wound dressings, bone implants and dental fillings.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32202585</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1477-9234</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Dalton transactions (Cambridge, England : 2003)</Title>
<ISOAbbreviation>Dalton Trans</ISOAbbreviation>
</Journal>
<ArticleTitle>Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide.</ArticleTitle>
<Pagination>
<MedlinePgn>4699-4709</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/d0dt00201a</ELocationID>
<Abstract>
<AbstractText>Copper oxide (CuO) nanoparticles (NPs) doped with Mg2+, Zn2+ and Ce4+ ions were prepared by a hydrothermal method. SEM images revealed a spherical surface morphology for all doped CuO NPs. XRD patterns confirm that all doped CuO NPs exhibit a monoclinic structure at a dopant concentration of less than 7%, and when the doping content is up to 10%, MgO, ZnO and CeO2 phases are formed. ICP analysis indicated that these three doping elements have a promoting effect on the release of Cu2+ from the doped CuO NPs. Moreover, investigation of the antibacterial activity of the doped CuO NPs reveals that the doped CuO nanoparticles show effective antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) compared to the Gram-negative Escherichia coli (E. coli) bacterium. Among them, 5% Mg, 3% Zn and 5% Ce-doped CuO NPs exhibit the best bactericidal effect at a very low concentration of 0.05 mg mL-1, and the highest bacteriostatic rate can reach 99.9%. The improved antibacterial activity of the doped CuO NPs was attributed to the synergetic effect of ROS generation and the inactivation of proteins in the bacterial cells by the binding of the Cu2+ ions to the bacterial cell surface. This work highlights the potential of the doped CuO NPs to replace silver for antibiotic-free antibacterial applications in wound dressings, bone implants and dental fillings.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Yirui</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-0087-7788</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2754-5169</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Xiangya Hospital, Central South University, Changsha, 410008, China. yinpingoral@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lei</LastName>
<ForeName>Ting</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6234-4621</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China. tlei@csu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Dalton Trans</MedlineTA>
<NlmUniqueID>101176026</NlmUniqueID>
<ISSNLinking>1477-9226</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>T8BEA5064F</RegistryNumber>
<NameOfSubstance UI="C000520">cuprous oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010316" MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32202585</ArticleId>
<ArticleId IdType="doi">10.1039/d0dt00201a</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000138 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000138 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32202585
   |texte=   Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32202585" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021