Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform.

Identifieur interne : 000130 ( Main/Corpus ); précédent : 000129; suivant : 000131

Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform.

Auteurs : Sina Kheiri ; Mohamed G A. Mohamed ; Meitham Amereh ; Deborah Roberts ; Keekyoung Kim

Source :

RBID : pubmed:32279821

English descriptors

Abstract

Over the past decades, inorganic nanoparticles (NPs), particularly metal oxide NPs, have attracted great attention due to their strong bactericidal effects. Researchers have used NPs to fabricate nanocomposite materials which have innate antibacterial capability. Herein, we present a straightforward method to fabricate antibacterial nanocomposites. Ag, TiO2, and ZnO NPs were dispersed within liquid silicone rubber (LSR) structure in four concentrations. Three different methods were used to evaluate the antibacterial efficiency of the NPs forming the nanocomposite materials: (I) the diffusion method, (II) agar counting plate, and (III) a live/dead assay of E. coli. The mechanical properties and hydrophobicity of the nanocomposites were characterized and correlated to the antibacterial efficiency of the NPs. In order to test the antibacterial efficiency in a high-throughput, cost-effective and efficient manner, a microfluidic device fabricated by 3D printing and soft-lithography methods was used. The LSR-15 wt% TiO2 nanocomposites showed the best antibacterial efficiency. In addition, TiO2 NPs formed the stiffest nanocomposites with very fine, even surface which increased the hydrophobicity of the surface where bacteria attach to grow, preventing bacteria from further growth.

DOI: 10.1016/j.msec.2020.110754
PubMed: 32279821

Links to Exploration step

pubmed:32279821

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform.</title>
<author>
<name sortKey="Kheiri, Sina" sort="Kheiri, Sina" uniqKey="Kheiri S" first="Sina" last="Kheiri">Sina Kheiri</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohamed, Mohamed G A" sort="Mohamed, Mohamed G A" uniqKey="Mohamed M" first="Mohamed G A" last="Mohamed">Mohamed G A. Mohamed</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amereh, Meitham" sort="Amereh, Meitham" uniqKey="Amereh M" first="Meitham" last="Amereh">Meitham Amereh</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Deborah" sort="Roberts, Deborah" uniqKey="Roberts D" first="Deborah" last="Roberts">Deborah Roberts</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Keekyoung" sort="Kim, Keekyoung" uniqKey="Kim K" first="Keekyoung" last="Kim">Keekyoung Kim</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada. Electronic address: keekyoung.kim@ucalgary.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32279821</idno>
<idno type="pmid">32279821</idno>
<idno type="doi">10.1016/j.msec.2020.110754</idno>
<idno type="wicri:Area/Main/Corpus">000130</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000130</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform.</title>
<author>
<name sortKey="Kheiri, Sina" sort="Kheiri, Sina" uniqKey="Kheiri S" first="Sina" last="Kheiri">Sina Kheiri</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohamed, Mohamed G A" sort="Mohamed, Mohamed G A" uniqKey="Mohamed M" first="Mohamed G A" last="Mohamed">Mohamed G A. Mohamed</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amereh, Meitham" sort="Amereh, Meitham" uniqKey="Amereh M" first="Meitham" last="Amereh">Meitham Amereh</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Deborah" sort="Roberts, Deborah" uniqKey="Roberts D" first="Deborah" last="Roberts">Deborah Roberts</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Keekyoung" sort="Kim, Keekyoung" uniqKey="Kim K" first="Keekyoung" last="Kim">Keekyoung Kim</name>
<affiliation>
<nlm:affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada. Electronic address: keekyoung.kim@ucalgary.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Materials science & engineering. C, Materials for biological applications</title>
<idno type="eISSN">1873-0191</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Disk Diffusion Antimicrobial Tests (MeSH)</term>
<term>Escherichia coli (drug effects)</term>
<term>Lab-On-A-Chip Devices (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Nanocomposites (chemistry)</term>
<term>Nanocomposites (toxicity)</term>
<term>Polymers (chemistry)</term>
<term>Silver (chemistry)</term>
<term>Titanium (chemistry)</term>
<term>Zinc Oxide (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Polymers</term>
<term>Silver</term>
<term>Titanium</term>
<term>Zinc Oxide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanocomposites</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Nanocomposites</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disk Diffusion Antimicrobial Tests</term>
<term>Lab-On-A-Chip Devices</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Over the past decades, inorganic nanoparticles (NPs), particularly metal oxide NPs, have attracted great attention due to their strong bactericidal effects. Researchers have used NPs to fabricate nanocomposite materials which have innate antibacterial capability. Herein, we present a straightforward method to fabricate antibacterial nanocomposites. Ag, TiO
<sub>2</sub>
, and ZnO NPs were dispersed within liquid silicone rubber (LSR) structure in four concentrations. Three different methods were used to evaluate the antibacterial efficiency of the NPs forming the nanocomposite materials: (I) the diffusion method, (II) agar counting plate, and (III) a live/dead assay of E. coli. The mechanical properties and hydrophobicity of the nanocomposites were characterized and correlated to the antibacterial efficiency of the NPs. In order to test the antibacterial efficiency in a high-throughput, cost-effective and efficient manner, a microfluidic device fabricated by 3D printing and soft-lithography methods was used. The LSR-15 wt% TiO
<sub>2</sub>
nanocomposites showed the best antibacterial efficiency. In addition, TiO
<sub>2</sub>
NPs formed the stiffest nanocomposites with very fine, even surface which increased the hydrophobicity of the surface where bacteria attach to grow, preventing bacteria from further growth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32279821</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>01</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-0191</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Materials science & engineering. C, Materials for biological applications</Title>
<ISOAbbreviation>Mater Sci Eng C Mater Biol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform.</ArticleTitle>
<Pagination>
<MedlinePgn>110754</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0928-4931(19)33664-1</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.msec.2020.110754</ELocationID>
<Abstract>
<AbstractText>Over the past decades, inorganic nanoparticles (NPs), particularly metal oxide NPs, have attracted great attention due to their strong bactericidal effects. Researchers have used NPs to fabricate nanocomposite materials which have innate antibacterial capability. Herein, we present a straightforward method to fabricate antibacterial nanocomposites. Ag, TiO
<sub>2</sub>
, and ZnO NPs were dispersed within liquid silicone rubber (LSR) structure in four concentrations. Three different methods were used to evaluate the antibacterial efficiency of the NPs forming the nanocomposite materials: (I) the diffusion method, (II) agar counting plate, and (III) a live/dead assay of E. coli. The mechanical properties and hydrophobicity of the nanocomposites were characterized and correlated to the antibacterial efficiency of the NPs. In order to test the antibacterial efficiency in a high-throughput, cost-effective and efficient manner, a microfluidic device fabricated by 3D printing and soft-lithography methods was used. The LSR-15 wt% TiO
<sub>2</sub>
nanocomposites showed the best antibacterial efficiency. In addition, TiO
<sub>2</sub>
NPs formed the stiffest nanocomposites with very fine, even surface which increased the hydrophobicity of the surface where bacteria attach to grow, preventing bacteria from further growth.</AbstractText>
<CopyrightInformation>Copyright © 2020. Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kheiri</LastName>
<ForeName>Sina</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohamed</LastName>
<ForeName>Mohamed G A</ForeName>
<Initials>MGA</Initials>
<AffiliationInfo>
<Affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amereh</LastName>
<ForeName>Meitham</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roberts</LastName>
<ForeName>Deborah</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Keekyoung</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>School of Engineering, University of British Columbia, Kelowna, BC V1V1V7, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada. Electronic address: keekyoung.kim@ucalgary.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Mater Sci Eng C Mater Biol Appl</MedlineTA>
<NlmUniqueID>101484109</NlmUniqueID>
<ISSNLinking>0928-4931</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>15FIX9V2JP</RegistryNumber>
<NameOfSubstance UI="C009495">titanium dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SOI2LOH54Z</RegistryNumber>
<NameOfSubstance UI="D015034">Zinc Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052978" MajorTopicYN="N">Disk Diffusion Antimicrobial Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056656" MajorTopicYN="Y">Lab-On-A-Chip Devices</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053761" MajorTopicYN="N">Nanocomposites</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015034" MajorTopicYN="N">Zinc Oxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antibacterial assessment</Keyword>
<Keyword MajorTopicYN="N">Liquid silicone rubber</Keyword>
<Keyword MajorTopicYN="N">Microfluidic device</Keyword>
<Keyword MajorTopicYN="N">Nanocomposites</Keyword>
<Keyword MajorTopicYN="N">Nanoparticles</Keyword>
</KeywordList>
<CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32279821</ArticleId>
<ArticleId IdType="pii">S0928-4931(19)33664-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.msec.2020.110754</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32279821
   |texte=   Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32279821" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021