Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.

Identifieur interne : 000083 ( Main/Corpus ); précédent : 000082; suivant : 000084

One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.

Auteurs : Weizong Weng ; Xiaoqun Li ; Wei Nie ; Haoyuan Liu ; Shanshan Liu ; Jianming Huang ; Qirong Zhou ; Jia He ; Jiacan Su ; Zhifeng Dong ; Dongliang Wang

Source :

RBID : pubmed:32764934

English descriptors

Abstract

Background

Bactericidal capacity, durable inhibition of biofilm formation, and a three-dimensional (3D) porous structure are the emphases of infected bone defect (IBD) treatment via local scaffold implantation strategy.

Purpose

In this study, silver nanoparticle (AgNP)-loaded nano-hydroxyapatite (nHA)@ reduced graphene oxide (RGO) 3D scaffolds (AHRG scaffolds) were designed to alleviate bone infection, inhibit biofilm formation, and promote bone repair through the synergistic effects of AgNPs, RGO, and nHA.

Materials and Methods

AHRGs were prepared using a one-step preparation method, to create a 3D porous scaffold to facilitate a uniform distribution of AgNPs and nHA. Methicillin-resistant Staphylococcus aureus (MRSA) was used as a model-resistant bacterium, and the effects of different silver loadings on the antimicrobial activity and cytocompatibility of materials were evaluated. Finally, a rabbit IBD model was used to evaluate the therapeutic effect of the AHRG scaffold in vivo.

Results

The results showed successful synthesis of the AHRG scaffold. The ideal 3D porous structure was verified using scanning electron microscopy and transmission electron microscopy, and X-ray photoelectron spectroscopy and selected area electron diffraction measurements revealed uniform distributions of AgNP and nHA. In vitro antibacterial and cytocompatibility indicated that the 4% AHRG scaffolds possessed the most favorable balance of bactericidal properties and cytocompatibility. In vivo evaluation of the IBD model showed promising treatment efficacy of AHRG scaffolds.

Conclusion

The as-fabricated AHRG scaffolds effectively eliminated infection and inhibited biofilm formation. IBD repair was facilitated by the bactericidal properties and 3D porous structure of the AHRG scaffold, suggesting its potential in the treatment of IBDs.


DOI: 10.2147/IJN.S241859
PubMed: 32764934
PubMed Central: PMC7371608

Links to Exploration step

pubmed:32764934

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.</title>
<author>
<name sortKey="Weng, Weizong" sort="Weng, Weizong" uniqKey="Weng W" first="Weizong" last="Weng">Weizong Weng</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaoqun" sort="Li, Xiaoqun" uniqKey="Li X" first="Xiaoqun" last="Li">Xiaoqun Li</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nie, Wei" sort="Nie, Wei" uniqKey="Nie W" first="Wei" last="Nie">Wei Nie</name>
<affiliation>
<nlm:affiliation>College of Chemistry, Chemical Engineering and Biotechnology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Haoyuan" sort="Liu, Haoyuan" uniqKey="Liu H" first="Haoyuan" last="Liu">Haoyuan Liu</name>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shanshan" sort="Liu, Shanshan" uniqKey="Liu S" first="Shanshan" last="Liu">Shanshan Liu</name>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jianming" sort="Huang, Jianming" uniqKey="Huang J" first="Jianming" last="Huang">Jianming Huang</name>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Qirong" sort="Zhou, Qirong" uniqKey="Zhou Q" first="Qirong" last="Zhou">Qirong Zhou</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="He, Jia" sort="He, Jia" uniqKey="He J" first="Jia" last="He">Jia He</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Jiacan" sort="Su, Jiacan" uniqKey="Su J" first="Jiacan" last="Su">Jiacan Su</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Zhifeng" sort="Dong, Zhifeng" uniqKey="Dong Z" first="Zhifeng" last="Dong">Zhifeng Dong</name>
<affiliation>
<nlm:affiliation>Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200233, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dongliang" sort="Wang, Dongliang" uniqKey="Wang D" first="Dongliang" last="Wang">Dongliang Wang</name>
<affiliation>
<nlm:affiliation>Orthopeadics Department, Xinhua Hospital Affiliated to the Shanghai Jiaotong University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32764934</idno>
<idno type="pmid">32764934</idno>
<idno type="doi">10.2147/IJN.S241859</idno>
<idno type="pmc">PMC7371608</idno>
<idno type="wicri:Area/Main/Corpus">000083</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000083</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.</title>
<author>
<name sortKey="Weng, Weizong" sort="Weng, Weizong" uniqKey="Weng W" first="Weizong" last="Weng">Weizong Weng</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Xiaoqun" sort="Li, Xiaoqun" uniqKey="Li X" first="Xiaoqun" last="Li">Xiaoqun Li</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nie, Wei" sort="Nie, Wei" uniqKey="Nie W" first="Wei" last="Nie">Wei Nie</name>
<affiliation>
<nlm:affiliation>College of Chemistry, Chemical Engineering and Biotechnology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Haoyuan" sort="Liu, Haoyuan" uniqKey="Liu H" first="Haoyuan" last="Liu">Haoyuan Liu</name>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shanshan" sort="Liu, Shanshan" uniqKey="Liu S" first="Shanshan" last="Liu">Shanshan Liu</name>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Jianming" sort="Huang, Jianming" uniqKey="Huang J" first="Jianming" last="Huang">Jianming Huang</name>
<affiliation>
<nlm:affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Qirong" sort="Zhou, Qirong" uniqKey="Zhou Q" first="Qirong" last="Zhou">Qirong Zhou</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="He, Jia" sort="He, Jia" uniqKey="He J" first="Jia" last="He">Jia He</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Jiacan" sort="Su, Jiacan" uniqKey="Su J" first="Jiacan" last="Su">Jiacan Su</name>
<affiliation>
<nlm:affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dong, Zhifeng" sort="Dong, Zhifeng" uniqKey="Dong Z" first="Zhifeng" last="Dong">Zhifeng Dong</name>
<affiliation>
<nlm:affiliation>Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200233, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dongliang" sort="Wang, Dongliang" uniqKey="Wang D" first="Dongliang" last="Wang">Dongliang Wang</name>
<affiliation>
<nlm:affiliation>Orthopeadics Department, Xinhua Hospital Affiliated to the Shanghai Jiaotong University, Shanghai 200433, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of nanomedicine</title>
<idno type="eISSN">1178-2013</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Biofilms (drug effects)</term>
<term>Bone Diseases, Infectious (therapy)</term>
<term>Bone Regeneration (drug effects)</term>
<term>Bone Substitutes (MeSH)</term>
<term>Bone and Bones (drug effects)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Durapatite (chemistry)</term>
<term>Female (MeSH)</term>
<term>Graphite (chemistry)</term>
<term>Male (MeSH)</term>
<term>Materials Testing (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Methicillin-Resistant Staphylococcus aureus (drug effects)</term>
<term>Porosity (MeSH)</term>
<term>Rabbits (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
<term>Staphylococcal Infections (therapy)</term>
<term>Tissue Engineering (methods)</term>
<term>Tissue Scaffolds (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Durapatite</term>
<term>Graphite</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Tissue Scaffolds</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biofilms</term>
<term>Bone Regeneration</term>
<term>Bone and Bones</term>
<term>Methicillin-Resistant Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Tissue Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Bone Diseases, Infectious</term>
<term>Staphylococcal Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bone Substitutes</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Male</term>
<term>Materials Testing</term>
<term>Porosity</term>
<term>Rabbits</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>Bactericidal capacity, durable inhibition of biofilm formation, and a three-dimensional (3D) porous structure are the emphases of infected bone defect (IBD) treatment via local scaffold implantation strategy.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Purpose</b>
</p>
<p>In this study, silver nanoparticle (AgNP)-loaded nano-hydroxyapatite (nHA)@ reduced graphene oxide (RGO) 3D scaffolds (AHRG scaffolds) were designed to alleviate bone infection, inhibit biofilm formation, and promote bone repair through the synergistic effects of AgNPs, RGO, and nHA.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Materials and Methods</b>
</p>
<p>AHRGs were prepared using a one-step preparation method, to create a 3D porous scaffold to facilitate a uniform distribution of AgNPs and nHA. Methicillin-resistant Staphylococcus aureus (MRSA) was used as a model-resistant bacterium, and the effects of different silver loadings on the antimicrobial activity and cytocompatibility of materials were evaluated. Finally, a rabbit IBD model was used to evaluate the therapeutic effect of the AHRG scaffold in vivo.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>The results showed successful synthesis of the AHRG scaffold. The ideal 3D porous structure was verified using scanning electron microscopy and transmission electron microscopy, and X-ray photoelectron spectroscopy and selected area electron diffraction measurements revealed uniform distributions of AgNP and nHA. In vitro antibacterial and cytocompatibility indicated that the 4% AHRG scaffolds possessed the most favorable balance of bactericidal properties and cytocompatibility. In vivo evaluation of the IBD model showed promising treatment efficacy of AHRG scaffolds.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Conclusion</b>
</p>
<p>The as-fabricated AHRG scaffolds effectively eliminated infection and inhibited biofilm formation. IBD repair was facilitated by the bactericidal properties and 3D porous structure of the AHRG scaffold, suggesting its potential in the treatment of IBDs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32764934</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1178-2013</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>International journal of nanomedicine</Title>
<ISOAbbreviation>Int J Nanomedicine</ISOAbbreviation>
</Journal>
<ArticleTitle>One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.</ArticleTitle>
<Pagination>
<MedlinePgn>5027-5042</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2147/IJN.S241859</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">Bactericidal capacity, durable inhibition of biofilm formation, and a three-dimensional (3D) porous structure are the emphases of infected bone defect (IBD) treatment via local scaffold implantation strategy.</AbstractText>
<AbstractText Label="Purpose" NlmCategory="UNASSIGNED">In this study, silver nanoparticle (AgNP)-loaded nano-hydroxyapatite (nHA)@ reduced graphene oxide (RGO) 3D scaffolds (AHRG scaffolds) were designed to alleviate bone infection, inhibit biofilm formation, and promote bone repair through the synergistic effects of AgNPs, RGO, and nHA.</AbstractText>
<AbstractText Label="Materials and Methods" NlmCategory="UNASSIGNED">AHRGs were prepared using a one-step preparation method, to create a 3D porous scaffold to facilitate a uniform distribution of AgNPs and nHA. Methicillin-resistant Staphylococcus aureus (MRSA) was used as a model-resistant bacterium, and the effects of different silver loadings on the antimicrobial activity and cytocompatibility of materials were evaluated. Finally, a rabbit IBD model was used to evaluate the therapeutic effect of the AHRG scaffold in vivo.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">The results showed successful synthesis of the AHRG scaffold. The ideal 3D porous structure was verified using scanning electron microscopy and transmission electron microscopy, and X-ray photoelectron spectroscopy and selected area electron diffraction measurements revealed uniform distributions of AgNP and nHA. In vitro antibacterial and cytocompatibility indicated that the 4% AHRG scaffolds possessed the most favorable balance of bactericidal properties and cytocompatibility. In vivo evaluation of the IBD model showed promising treatment efficacy of AHRG scaffolds.</AbstractText>
<AbstractText Label="Conclusion" NlmCategory="UNASSIGNED">The as-fabricated AHRG scaffolds effectively eliminated infection and inhibited biofilm formation. IBD repair was facilitated by the bactericidal properties and 3D porous structure of the AHRG scaffold, suggesting its potential in the treatment of IBDs.</AbstractText>
<CopyrightInformation>© 2020 Weng et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Weng</LastName>
<ForeName>Weizong</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">0000-0003-3918-2334</Identifier>
<AffiliationInfo>
<Affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Li</LastName>
<ForeName>Xiaoqun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nie</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Chemistry, Chemical Engineering and Biotechnology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Haoyuan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Shanshan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jianming</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Qirong</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Jia</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Jiacan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Zhifeng</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200233, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Dongliang</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Orthopeadics Department, Xinhua Hospital Affiliated to the Shanghai Jiaotong University, Shanghai 200433, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>New Zealand</Country>
<MedlineTA>Int J Nanomedicine</MedlineTA>
<NlmUniqueID>101263847</NlmUniqueID>
<ISSNLinking>1176-9114</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018786">Bone Substitutes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000628730">graphene oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7782-42-5</RegistryNumber>
<NameOfSubstance UI="D006108">Graphite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91D9GV0Z28</RegistryNumber>
<NameOfSubstance UI="D017886">Durapatite</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="N">Biofilms</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001850" MajorTopicYN="N">Bone Diseases, Infectious</DescriptorName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001861" MajorTopicYN="N">Bone Regeneration</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018786" MajorTopicYN="N">Bone Substitutes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001842" MajorTopicYN="N">Bone and Bones</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017886" MajorTopicYN="N">Durapatite</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006108" MajorTopicYN="N">Graphite</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008422" MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055624" MajorTopicYN="N">Methicillin-Resistant Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016062" MajorTopicYN="N">Porosity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013203" MajorTopicYN="N">Staphylococcal Infections</DescriptorName>
<QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023822" MajorTopicYN="N">Tissue Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054457" MajorTopicYN="N">Tissue Scaffolds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biofilm</Keyword>
<Keyword MajorTopicYN="N">graphene oxide</Keyword>
<Keyword MajorTopicYN="N">hydroxyapatite</Keyword>
<Keyword MajorTopicYN="N">infected bone defect</Keyword>
<Keyword MajorTopicYN="N">scaffold</Keyword>
<Keyword MajorTopicYN="N">silver nanoparticles</Keyword>
<Keyword MajorTopicYN="N">three-dimensional</Keyword>
</KeywordList>
<CoiStatement>The authors declare no competing interests in association with this work.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32764934</ArticleId>
<ArticleId IdType="doi">10.2147/IJN.S241859</ArticleId>
<ArticleId IdType="pii">241859</ArticleId>
<ArticleId IdType="pmc">PMC7371608</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:915-927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30948128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2001 Jul 14;358(9276):135-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11463434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soft Matter. 2017 Oct 25;13(41):7649-7656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28990019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Biomed Eng. 2015 Mar;43(3):515-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25476163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>R Soc Open Sci. 2018 Nov 14;5(11):181083</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30564401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2010 Apr 21;46(15):2596-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20449319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Apr;57(4):2003-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Aug 08;18(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28786931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol. 2014 Jan;90(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24102233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Apr 28;42(16):5682-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23443993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Sep;8(9):623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20676145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1935-1947</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29113502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2019 Jan 29;14:865-874</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30774339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:954-965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30678983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res A. 2014 Dec;102(12):4213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24446113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2019 Feb 15;651(Pt 1):1087-1095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30266053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2018 Jun 1;2018(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29858337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanobiotechnology. 2018 Feb 16;16(1):14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29452593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2017 Feb 15;580:1300-1308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28003049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Histol. 2018 Aug;49(4):357-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29846865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mater Chem B. 2018 Feb 7;6(5):740-752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32254261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2001 Apr;45(4):999-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11257008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Nanotechnol. 2018 Dec 1;14(12):2003-2017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30305209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomater Sci Polym Ed. 2016 Nov;27(16):1584-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2012 Mar;18(3):268-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21793988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2018 May 03;13:2665-2684</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29760549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2018 Jan 24;66(3):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29281881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2011 Mar 21;47(11):3084-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):3986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23910305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Cell Mater. 2014 Jun 08;27:332-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24908426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2019 May 1;128:973-984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30738901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000083 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000083 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32764934
   |texte=   One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32764934" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021