Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biogenic Silver Nanoparticles Synthesized by Lysinibacillus xylanilyticus MAHUQ-40 to Control Antibiotic-Resistant Human Pathogens Vibrio parahaemolyticus and Salmonella Typhimurium.

Identifieur interne : 000007 ( Main/Corpus ); précédent : 000006; suivant : 000008

Biogenic Silver Nanoparticles Synthesized by Lysinibacillus xylanilyticus MAHUQ-40 to Control Antibiotic-Resistant Human Pathogens Vibrio parahaemolyticus and Salmonella Typhimurium.

Auteurs : Md Amdadul Huq

Source :

RBID : pubmed:33425864

Abstract

The present study highlights a simple and eco-friendly method for the biosynthesis of silver nanoparticles (AgNPs) using Lysinibacillus xylanilyticus strain MAHUQ-40. Also, the synthesized AgNPs were used to investigate their antibacterial activity and mechanisms against antibiotic-resistant pathogens. Biosynthesis of AgNPs was confirmed by ultraviolet-visible spectroscopy, and then, they were characterized by field emission-transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and fourier transform-infrared (FTIR). The toxicity of AgNPs against two pathogenic bacteria was evaluated. The UV-vis spectral scanning showed the peak for synthesized AgNPs at 438 nm. Under FE-TEM, the synthesized AgNPs were spherical with diameter ranges from 8 to 30 nm. The XRD analysis revealed the crystallinity of synthesized AgNPs. FTIR data showed various biomolecules including proteins and polysaccharides that may be involved in the synthesis and stabilization of AgNPs. The resultant AgNPs showed significant antibacterial activity against tested pathogens. The MICs (minimum inhibitory concentrations) and MBCs (minimum bactericidal concentrations) of the AgNPs synthesized by strain MAHUQ-40 were 3.12 and 12.5 μg/ml, respectively, against Vibrio parahaemolyticus and 6.25 and 25 μg/ml, respectively, against Salmonella Typhimurium. FE-TEM analysis showed that the biogenic AgNPs generated structural and morphological changes and damaged the membrane integrity of pathogenic bacteria. Our findings showed the potentiality of L. xylanilyticus MAHUQ-40 to synthesis AgNPs that acted as potent antibacterial material against pathogenic bacterial strains.

DOI: 10.3389/fbioe.2020.597502
PubMed: 33425864
PubMed Central: PMC7793659

Links to Exploration step

pubmed:33425864

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biogenic Silver Nanoparticles Synthesized by
<i>Lysinibacillus xylanilyticus</i>
MAHUQ-40 to Control Antibiotic-Resistant Human Pathogens
<i>Vibrio parahaemolyticus</i>
and
<i>Salmonella Typhimurium</i>
.</title>
<author>
<name sortKey="Huq, Md Amdadul" sort="Huq, Md Amdadul" uniqKey="Huq M" first="Md Amdadul" last="Huq">Md Amdadul Huq</name>
<affiliation>
<nlm:affiliation>Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, South Korea.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33425864</idno>
<idno type="pmid">33425864</idno>
<idno type="doi">10.3389/fbioe.2020.597502</idno>
<idno type="pmc">PMC7793659</idno>
<idno type="wicri:Area/Main/Corpus">000007</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000007</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biogenic Silver Nanoparticles Synthesized by
<i>Lysinibacillus xylanilyticus</i>
MAHUQ-40 to Control Antibiotic-Resistant Human Pathogens
<i>Vibrio parahaemolyticus</i>
and
<i>Salmonella Typhimurium</i>
.</title>
<author>
<name sortKey="Huq, Md Amdadul" sort="Huq, Md Amdadul" uniqKey="Huq M" first="Md Amdadul" last="Huq">Md Amdadul Huq</name>
<affiliation>
<nlm:affiliation>Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, South Korea.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in bioengineering and biotechnology</title>
<idno type="ISSN">2296-4185</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present study highlights a simple and eco-friendly method for the biosynthesis of silver nanoparticles (AgNPs) using
<i>Lysinibacillus xylanilyticus</i>
strain MAHUQ-40. Also, the synthesized AgNPs were used to investigate their antibacterial activity and mechanisms against antibiotic-resistant pathogens. Biosynthesis of AgNPs was confirmed by ultraviolet-visible spectroscopy, and then, they were characterized by field emission-transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and fourier transform-infrared (FTIR). The toxicity of AgNPs against two pathogenic bacteria was evaluated. The UV-vis spectral scanning showed the peak for synthesized AgNPs at 438 nm. Under FE-TEM, the synthesized AgNPs were spherical with diameter ranges from 8 to 30 nm. The XRD analysis revealed the crystallinity of synthesized AgNPs. FTIR data showed various biomolecules including proteins and polysaccharides that may be involved in the synthesis and stabilization of AgNPs. The resultant AgNPs showed significant antibacterial activity against tested pathogens. The MICs (minimum inhibitory concentrations) and MBCs (minimum bactericidal concentrations) of the AgNPs synthesized by strain MAHUQ-40 were 3.12 and 12.5 μg/ml, respectively, against
<i>Vibrio parahaemolyticus</i>
and 6.25 and 25 μg/ml, respectively, against
<i>Salmonella Typhimurium</i>
. FE-TEM analysis showed that the biogenic AgNPs generated structural and morphological changes and damaged the membrane integrity of pathogenic bacteria. Our findings showed the potentiality of
<i>L. xylanilyticus</i>
MAHUQ-40 to synthesis AgNPs that acted as potent antibacterial material against pathogenic bacterial strains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33425864</PMID>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2296-4185</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in bioengineering and biotechnology</Title>
<ISOAbbreviation>Front Bioeng Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Biogenic Silver Nanoparticles Synthesized by
<i>Lysinibacillus xylanilyticus</i>
MAHUQ-40 to Control Antibiotic-Resistant Human Pathogens
<i>Vibrio parahaemolyticus</i>
and
<i>Salmonella Typhimurium</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>597502</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fbioe.2020.597502</ELocationID>
<Abstract>
<AbstractText>The present study highlights a simple and eco-friendly method for the biosynthesis of silver nanoparticles (AgNPs) using
<i>Lysinibacillus xylanilyticus</i>
strain MAHUQ-40. Also, the synthesized AgNPs were used to investigate their antibacterial activity and mechanisms against antibiotic-resistant pathogens. Biosynthesis of AgNPs was confirmed by ultraviolet-visible spectroscopy, and then, they were characterized by field emission-transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and fourier transform-infrared (FTIR). The toxicity of AgNPs against two pathogenic bacteria was evaluated. The UV-vis spectral scanning showed the peak for synthesized AgNPs at 438 nm. Under FE-TEM, the synthesized AgNPs were spherical with diameter ranges from 8 to 30 nm. The XRD analysis revealed the crystallinity of synthesized AgNPs. FTIR data showed various biomolecules including proteins and polysaccharides that may be involved in the synthesis and stabilization of AgNPs. The resultant AgNPs showed significant antibacterial activity against tested pathogens. The MICs (minimum inhibitory concentrations) and MBCs (minimum bactericidal concentrations) of the AgNPs synthesized by strain MAHUQ-40 were 3.12 and 12.5 μg/ml, respectively, against
<i>Vibrio parahaemolyticus</i>
and 6.25 and 25 μg/ml, respectively, against
<i>Salmonella Typhimurium</i>
. FE-TEM analysis showed that the biogenic AgNPs generated structural and morphological changes and damaged the membrane integrity of pathogenic bacteria. Our findings showed the potentiality of
<i>L. xylanilyticus</i>
MAHUQ-40 to synthesis AgNPs that acted as potent antibacterial material against pathogenic bacterial strains.</AbstractText>
<CopyrightInformation>Copyright © 2020 Huq.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huq</LastName>
<ForeName>Md Amdadul</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Bioeng Biotechnol</MedlineTA>
<NlmUniqueID>101632513</NlmUniqueID>
<ISSNLinking>2296-4185</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AgNPs</Keyword>
<Keyword MajorTopicYN="N">Lysinibacillus xylanilyticus MAHUQ-40</Keyword>
<Keyword MajorTopicYN="N">antimicrobial activity</Keyword>
<Keyword MajorTopicYN="N">eco-friendly synthesis</Keyword>
<Keyword MajorTopicYN="N">human pathogens</Keyword>
</KeywordList>
<CoiStatement>The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>5</Hour>
<Minute>42</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33425864</ArticleId>
<ArticleId IdType="doi">10.3389/fbioe.2020.597502</ArticleId>
<ArticleId IdType="pmc">PMC7793659</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Biomed Anal. 2020 Jan 30;178:112970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31722822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2020 Feb 22;21(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32098417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 2020 Oct;147:104302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32504846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):2072-2082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31126203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):844-851</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30879351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nanosci Nanotechnol. 2009 Sep;9(9):5497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19928252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Artif Cells Nanomed Biotechnol. 2016 Jun;44(4):1127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25749281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2015 Oct 5;130:353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26076636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomedicine. 2010 Apr;6(2):257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19616126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Foodborne Pathog Dis. 2020 Jun;17(6):396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31755743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2018 Dec;200(10):1439-1445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30062519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2015 Jan;61(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25444587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mater Chem B. 2018 Jun 14;6(22):3632-3649</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32254826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Spectrochim Acta A Mol Biomol Spectrosc. 2011 Sep;79(5):1461-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21616704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Sep 10;9(1):13071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31506473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Biomed Anal. 2020 Feb 5;179:113012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31791838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Radiol. 2015 Oct;88(1054):20150207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25969868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioprocess Biosyst Eng. 2009 Jan;32(1):79-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18438688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol Sci. 2019 Jul 10;18(7):1761-1772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31111854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Anal. 2018 Aug;8(4):258-264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30140490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saudi J Biol Sci. 2019 Sep;26(6):1207-1215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31516350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2010 Nov;28(11):580-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2016 Jan 9;387(10014):176-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26603922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Artif Cells Nanomed Biotechnol. 2020 Dec;48(1):672-682</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32075448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Artif Cells Nanomed Biotechnol. 2018 Sep;46(6):1163-1170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28784039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000007 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000007 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33425864
   |texte=   Biogenic Silver Nanoparticles Synthesized by Lysinibacillus xylanilyticus MAHUQ-40 to Control Antibiotic-Resistant Human Pathogens Vibrio parahaemolyticus and Salmonella Typhimurium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33425864" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021