Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release

Identifieur interne : 000008 ( PascalFrancis/Curation ); précédent : 000007; suivant : 000009

Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release

Auteurs : C. Cardellini [Italie] ; G. Chiodini [Italie] ; F. Frondini [Italie]

Source :

RBID : Pascal:04-0022324

Descripteurs français

English descriptors

Abstract

Conditional sequential Gaussian simulations (sGs) have been applied for the first time to the study of soil diffuse degassing from different volcanic and nonvolcanic systems. The application regards five data sets of soil CO2 fluxes measured with the accumulation chamber methodology at the volcanic areas of Solfatara of Pozzuoli (Italy), Vesuvio cone (Italy), Nisyros (Greece), and Horseshoe Lake (California) and at the nonvolcanic degassing area of Poggio dell'Olivo (Italy). The sGs algorithm was used to generate 100 realizations of CO2 flux for each area. Probabilistic summaries of these simulations, together with the information given by probability plots, were used (1) to draw maps of the probability that CO2 fluxes exceed thresholds specific for a background flux, i.e., to define the probable extension of the degassing structures, (2) to calculate the total CO2 output, and (3) to quantify the uncertainty of the estimation. The results show that the sGs is a suitable tool to model soil diffuse degassing, producing realistic images of the distribution of the CO2 fluxes that honor the histogram and variogram of the original data. Moreover, the relation between the sample design and the uncertainty of estimation was investigated leading to an empirical relation between uncertainty and the sampling density that can be useful for the planning of future CO2 flux surveys.
pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 108
A06       @2 B9
A08 01  1  ENG  @1 Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release
A11 01  1    @1 CARDELLINI (C.)
A11 02  1    @1 CHIODINI (G.)
A11 03  1    @1 FRONDINI (F.)
A14 01      @1 Dipartimento di Scienze della Terra, University di Perugia @2 Perugia @3 ITA @Z 1 aut. @Z 3 aut.
A14 02      @1 Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia @2 Naples @3 ITA @Z 2 aut.
A20       @2 ECV3.1-ECV3.13 @7 4
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000118717390140
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 36 ref.
A47 01  1    @0 04-0022324
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 Conditional sequential Gaussian simulations (sGs) have been applied for the first time to the study of soil diffuse degassing from different volcanic and nonvolcanic systems. The application regards five data sets of soil CO2 fluxes measured with the accumulation chamber methodology at the volcanic areas of Solfatara of Pozzuoli (Italy), Vesuvio cone (Italy), Nisyros (Greece), and Horseshoe Lake (California) and at the nonvolcanic degassing area of Poggio dell'Olivo (Italy). The sGs algorithm was used to generate 100 realizations of CO2 flux for each area. Probabilistic summaries of these simulations, together with the information given by probability plots, were used (1) to draw maps of the probability that CO2 fluxes exceed thresholds specific for a background flux, i.e., to define the probable extension of the degassing structures, (2) to calculate the total CO2 output, and (3) to quantify the uncertainty of the estimation. The results show that the sGs is a suitable tool to model soil diffuse degassing, producing realistic images of the distribution of the CO2 fluxes that honor the histogram and variogram of the original data. Moreover, the relation between the sample design and the uncertainty of estimation was investigated leading to an empirical relation between uncertainty and the sampling density that can be useful for the planning of future CO2 flux surveys.
C02 01  2    @0 222A01
C02 02  2    @0 226C02
C02 03  2    @0 226B02
C02 04  X    @0 001E01F01
C02 05  X    @0 001E01P02
C02 06  X    @0 001E01O02
C03 01  2  FRE  @0 Italie @2 NG @5 01
C03 01  2  ENG  @0 Italy @2 NG @5 01
C03 01  2  SPA  @0 Italia @2 NG @5 01
C03 02  2  FRE  @0 Grèce @2 NG @5 02
C03 02  2  ENG  @0 Greece @2 NG @5 02
C03 02  2  SPA  @0 Grecia @2 NG @5 02
C03 03  2  FRE  @0 Californie @2 NG @5 03
C03 03  2  ENG  @0 California @2 NG @5 03
C03 03  2  SPA  @0 California @2 NG @5 03
C03 04  2  FRE  @0 Etude expérimentale @5 04
C03 04  2  ENG  @0 experimental studies @5 04
C03 05  2  FRE  @0 Dioxyde carbone @5 05
C03 05  2  ENG  @0 carbon dioxide @5 05
C03 06  2  FRE  @0 Simulation numérique @5 06
C03 06  2  ENG  @0 digital simulation @5 06
C03 06  2  SPA  @0 Simulación numérica @5 06
C03 07  2  FRE  @0 Sol @5 07
C03 07  2  ENG  @0 soils @5 07
C03 07  2  SPA  @0 Suelo @5 07
C03 08  2  FRE  @0 Dégazage @5 08
C03 08  2  ENG  @0 degassing @5 08
C03 09  2  FRE  @0 Accumulation @5 09
C03 09  2  ENG  @0 accumulation @5 09
C03 10  2  FRE  @0 Volcanisme @5 10
C03 10  2  ENG  @0 volcanism @5 10
C03 11  2  FRE  @0 Probabilité @5 14
C03 11  2  ENG  @0 probability @5 14
C03 11  2  SPA  @0 Probabilidad @5 14
C03 12  2  FRE  @0 Carte @5 15
C03 12  2  ENG  @0 maps @5 15
C03 12  2  SPA  @0 Mapa @5 15
C03 13  2  FRE  @0 Modèle @5 18
C03 13  2  ENG  @0 models @5 18
C03 13  2  SPA  @0 Modelo @5 18
C03 14  2  FRE  @0 Histogramme @5 19
C03 14  2  ENG  @0 histograms @5 19
C03 14  2  SPA  @0 Histograma @5 19
C03 15  2  FRE  @0 Variogramme @5 20
C03 15  2  ENG  @0 variograms @5 20
C03 16  2  FRE  @0 Echantillonnage @5 21
C03 16  2  ENG  @0 sampling @5 21
C03 16  2  SPA  @0 Muestreo @5 21
C03 17  2  FRE  @0 Densité @5 22
C03 17  2  ENG  @0 density @5 22
C03 17  2  SPA  @0 Densidad @5 22
C03 18  2  FRE  @0 Modèle stochastique @5 24
C03 18  2  ENG  @0 stochastic models @5 24
C03 19  2  FRE  @0 Emission atmosphérique @5 25
C03 19  2  ENG  @0 atmospheric emission @5 25
C03 20  2  FRE  @0 Actuel @5 62
C03 20  2  ENG  @0 modern @5 62
C03 20  2  SPA  @0 Actual @5 62
C06       @0 ILS @0 TAS
C07 01  2  FRE  @0 Europe Sud @2 NG
C07 01  2  ENG  @0 Southern Europe @2 NG
C07 01  2  SPA  @0 Europa Sur @2 NG
C07 02  2  FRE  @0 Europe
C07 02  2  ENG  @0 Europe
C07 02  2  SPA  @0 Europa
C07 03  2  FRE  @0 Etats Unis @2 NG
C07 03  2  ENG  @0 United States @2 NG
C07 03  2  SPA  @0 Estados Unidos @2 NG
C07 04  2  FRE  @0 Amérique du Nord
C07 04  2  ENG  @0 North America
C07 04  2  SPA  @0 America del norte
N21       @1 012
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0022324

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Application of stochastic simulation to CO
<sub>2</sub>
flux from soil: Mapping and quantification of gas release</title>
<author>
<name sortKey="Cardellini, C" sort="Cardellini, C" uniqKey="Cardellini C" first="C." last="Cardellini">C. Cardellini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze della Terra, University di Perugia</s1>
<s2>Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Chiodini, G" sort="Chiodini, G" uniqKey="Chiodini G" first="G." last="Chiodini">G. Chiodini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia</s1>
<s2>Naples</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Frondini, F" sort="Frondini, F" uniqKey="Frondini F" first="F." last="Frondini">F. Frondini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze della Terra, University di Perugia</s1>
<s2>Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0022324</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0022324 INIST</idno>
<idno type="RBID">Pascal:04-0022324</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000032</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Application of stochastic simulation to CO
<sub>2</sub>
flux from soil: Mapping and quantification of gas release</title>
<author>
<name sortKey="Cardellini, C" sort="Cardellini, C" uniqKey="Cardellini C" first="C." last="Cardellini">C. Cardellini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze della Terra, University di Perugia</s1>
<s2>Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Chiodini, G" sort="Chiodini, G" uniqKey="Chiodini G" first="G." last="Chiodini">G. Chiodini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia</s1>
<s2>Naples</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Frondini, F" sort="Frondini, F" uniqKey="Frondini F" first="F." last="Frondini">F. Frondini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimento di Scienze della Terra, University di Perugia</s1>
<s2>Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>California</term>
<term>Greece</term>
<term>Italy</term>
<term>accumulation</term>
<term>atmospheric emission</term>
<term>carbon dioxide</term>
<term>degassing</term>
<term>density</term>
<term>digital simulation</term>
<term>experimental studies</term>
<term>histograms</term>
<term>maps</term>
<term>models</term>
<term>modern</term>
<term>probability</term>
<term>sampling</term>
<term>soils</term>
<term>stochastic models</term>
<term>variograms</term>
<term>volcanism</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Italie</term>
<term>Grèce</term>
<term>Californie</term>
<term>Etude expérimentale</term>
<term>Dioxyde carbone</term>
<term>Simulation numérique</term>
<term>Sol</term>
<term>Dégazage</term>
<term>Accumulation</term>
<term>Volcanisme</term>
<term>Probabilité</term>
<term>Carte</term>
<term>Modèle</term>
<term>Histogramme</term>
<term>Variogramme</term>
<term>Echantillonnage</term>
<term>Densité</term>
<term>Modèle stochastique</term>
<term>Emission atmosphérique</term>
<term>Actuel</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Italie</term>
<term>Grèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Conditional sequential Gaussian simulations (sGs) have been applied for the first time to the study of soil diffuse degassing from different volcanic and nonvolcanic systems. The application regards five data sets of soil CO
<sub>2</sub>
fluxes measured with the accumulation chamber methodology at the volcanic areas of Solfatara of Pozzuoli (Italy), Vesuvio cone (Italy), Nisyros (Greece), and Horseshoe Lake (California) and at the nonvolcanic degassing area of Poggio dell'Olivo (Italy). The sGs algorithm was used to generate 100 realizations of CO
<sub>2</sub>
flux for each area. Probabilistic summaries of these simulations, together with the information given by probability plots, were used (1) to draw maps of the probability that CO
<sub>2</sub>
fluxes exceed thresholds specific for a background flux, i.e., to define the probable extension of the degassing structures, (2) to calculate the total CO
<sub>2</sub>
output, and (3) to quantify the uncertainty of the estimation. The results show that the sGs is a suitable tool to model soil diffuse degassing, producing realistic images of the distribution of the CO
<sub>2</sub>
fluxes that honor the histogram and variogram of the original data. Moreover, the relation between the sample design and the uncertainty of estimation was investigated leading to an empirical relation between uncertainty and the sampling density that can be useful for the planning of future CO
<sub>2</sub>
flux surveys.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>108</s2>
</fA05>
<fA06>
<s2>B9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Application of stochastic simulation to CO
<sub>2</sub>
flux from soil: Mapping and quantification of gas release</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CARDELLINI (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHIODINI (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FRONDINI (F.)</s1>
</fA11>
<fA14 i1="01">
<s1>Dipartimento di Scienze della Terra, University di Perugia</s1>
<s2>Perugia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia</s1>
<s2>Naples</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>ECV3.1-ECV3.13</s2>
<s7>4</s7>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000118717390140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0022324</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Conditional sequential Gaussian simulations (sGs) have been applied for the first time to the study of soil diffuse degassing from different volcanic and nonvolcanic systems. The application regards five data sets of soil CO
<sub>2</sub>
fluxes measured with the accumulation chamber methodology at the volcanic areas of Solfatara of Pozzuoli (Italy), Vesuvio cone (Italy), Nisyros (Greece), and Horseshoe Lake (California) and at the nonvolcanic degassing area of Poggio dell'Olivo (Italy). The sGs algorithm was used to generate 100 realizations of CO
<sub>2</sub>
flux for each area. Probabilistic summaries of these simulations, together with the information given by probability plots, were used (1) to draw maps of the probability that CO
<sub>2</sub>
fluxes exceed thresholds specific for a background flux, i.e., to define the probable extension of the degassing structures, (2) to calculate the total CO
<sub>2</sub>
output, and (3) to quantify the uncertainty of the estimation. The results show that the sGs is a suitable tool to model soil diffuse degassing, producing realistic images of the distribution of the CO
<sub>2</sub>
fluxes that honor the histogram and variogram of the original data. Moreover, the relation between the sample design and the uncertainty of estimation was investigated leading to an empirical relation between uncertainty and the sampling density that can be useful for the planning of future CO
<sub>2</sub>
flux surveys.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>222A01</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>226C02</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>226B02</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001E01F01</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>001E01P02</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>001E01O02</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Italie</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>Italy</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Italia</s0>
<s2>NG</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Grèce</s0>
<s2>NG</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>Greece</s0>
<s2>NG</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Grecia</s0>
<s2>NG</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Californie</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>California</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>California</s0>
<s2>NG</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Dioxyde carbone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>carbon dioxide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Simulation numérique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>digital simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Simulación numérica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Sol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>soils</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Suelo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Dégazage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>degassing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Accumulation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>accumulation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Volcanisme</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>volcanism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Probabilité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>probability</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Probabilidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Carte</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>maps</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Mapa</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>models</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Histogramme</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>histograms</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Histograma</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Variogramme</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>variograms</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Echantillonnage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>sampling</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Muestreo</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Densité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>density</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Densidad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Modèle stochastique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>stochastic models</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Emission atmosphérique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>atmospheric emission</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Actuel</s0>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>modern</s0>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Actual</s0>
<s5>62</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Europe Sud</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Southern Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Europa Sur</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Europe</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Europe</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Europa</s0>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fN21>
<s1>012</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0022324
   |texte=   Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021