Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimates of P , T , P H2O and f O2 for lavas from Patmos (Greece) and implications for magmatic evolution

Identifieur interne : 000405 ( Main/Exploration ); précédent : 000404; suivant : 000406

Estimates of P , T , P H2O and f O2 for lavas from Patmos (Greece) and implications for magmatic evolution

Auteurs : Michael Barton [États-Unis] ; G. Paul Wyers [États-Unis]

Source :

RBID : ISTEX:3DF30D94F5BF54F9ACB1B944706B20D0D3672B79

Descripteurs français

English descriptors

Abstract

Abstract: Various geothermometers and geobarometers are used to estimate the conditions at which magmas erupted on Patmos crystallized. Equilibrium phenocryst compositions are used as input data for the calculations and previously reported activity-composition relationships for minerals and melts are used. The results constitute an internally consistent set of estimates of T, P, PH2O and fO2, but there are large auncertainties in values of P(±2 kbar), PH2O (up to ±0.7 kb) and fO2 (up to ±1.4 log units). The ne-trachybasalt-hy-trachybasalt-hy-trachyandesite-Q-trachyte lavas of the Main Volcanic Series (MVS) crystallized over a temperature interval of 1173-920°C at 2–4 kbar. Water contents (calculated from PH2O) ranged from ≤2.5% in the least evolved magmas to 5–6% in the Q-trachytes. Oxygen fugacity (about 3 log units above values for the FMQ buffer) during crystallization of the ne-trachybasalt was similar to values for alkaline lavas from arcs and from oceanic islands. Calculated oxygen fugacities for crystallization of the evolved MVS magmas are lower (within about 1 log unit of the FMQ buffer) and this partly reflects uncertainties in calculation of the activity of annite. The ne-trachybasalts of the Young Volcanic Series (YVS) crystallized at 1141–1121 °C at values of fO2 about 2 log units above those defined by the FMQ buffer. These magmas contained 2.2–3.8% H2O prior to eruption. Crystallization of the YVS magmas was polybaric, and occurred over the pressure range 7–2 kbar. The higher pressure indicates that magma evolution began in chambers sites at or near the base of the crust (about 28 km).The results place constraints on models for the evolution of the magmas erupted on Patmos. The data are consistent with eruption of the MVS magmas from a single chamber sited at a depth of ≈11.5 km, or from several chambers sited over a depth interval of 8.5 to 14.5 km. The fO2-T data do not necessarily indicate that the trachyandesites and Q-trachytes are unrelated to the ne-trachybasalts. Other factors, such as assimilation and degassing prior to eruption, can lead to a lowering of fO2 during evolution. Polybaric crystallization of the YVS magmas as they traversed crust heated by previous magmatic activity is consistent with evolution via assimilation coupled with fractionation.The preservation of xenocrysts of mantle olivine in the primitive MVS and YVS ne-trachybasalts requires magma ascent times of less than about 78 days (calculated from published diffusion data). It is suggested that the YVS ne-trachybasalts experienced fractional crystallization in the mantle prior to picking up the xenocrysts. The phenocrysts in the MVS ne-trachybasalt record low-pressure (2–3 kbar) crystallization, indicating that either: (a) these magmas represent hybrids formed by mixing of a primitive, xenocryst-bearing magma with a more evolved magma; or (b) they evolved via fractional crystallization within the crust. Mixing is not consistent with mineralogical and geochemical data, and the latter alternative is preferred. Crystallization occurred rapidly, under supercooled conditions, when magma ascent was temporarily arrested in low-pressure chambers containing less-dense, evolved magmas (hy-trachybasalt to Q-trachyte). Fractionation probably reflects preferential nucleation and growth along the chamber margins. It is apparent that xenocryst-bearing magmas can evolve via fractional crystallization, and an important implication is that xenolith/xenocryst-bearing magmas may also assimilate crustal material. Hence, the trace-element and isotopic signatures of such magmas do not necessarily reflect those of the upper-mantle source region.

Url:
DOI: 10.1016/0377-0273(91)90005-K


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Estimates of P , T , P H2O and f O2 for lavas from Patmos (Greece) and implications for magmatic evolution</title>
<author>
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
</author>
<author>
<name sortKey="Wyers, G Paul" sort="Wyers, G Paul" uniqKey="Wyers G" first="G. Paul" last="Wyers">G. Paul Wyers</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3DF30D94F5BF54F9ACB1B944706B20D0D3672B79</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1016/0377-0273(91)90005-K</idno>
<idno type="url">https://api.istex.fr/document/3DF30D94F5BF54F9ACB1B944706B20D0D3672B79/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000169</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000169</idno>
<idno type="wicri:Area/Istex/Curation">000169</idno>
<idno type="wicri:Area/Istex/Checkpoint">000335</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000335</idno>
<idno type="wicri:doubleKey">0377-0273:1991:Barton M:estimates:of:p</idno>
<idno type="wicri:Area/Main/Merge">000419</idno>
<idno type="wicri:Area/Main/Curation">000405</idno>
<idno type="wicri:Area/Main/Exploration">000405</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Estimates of P , T , P H2O and f O2 for lavas from Patmos (Greece) and implications for magmatic evolution</title>
<author>
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geological Sciences, The Ohio State University, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wyers, G Paul" sort="Wyers, G Paul" uniqKey="Wyers G" first="G. Paul" last="Wyers">G. Paul Wyers</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geological Sciences, The Ohio State University, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="ISSN">0377-0273</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1991">1991</date>
<biblScope unit="volume">47</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="265">265</biblScope>
<biblScope unit="page" to="297">297</biblScope>
</imprint>
<idno type="ISSN">0377-0273</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0377-0273</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Afmq</term>
<term>Alkaline</term>
<term>Alkaline lavas</term>
<term>Alkaline magmas</term>
<term>Amiata</term>
<term>Andesite</term>
<term>Ascent</term>
<term>Bartonand wyers</term>
<term>Basalt</term>
<term>Basaltic</term>
<term>Bergen</term>
<term>Biotite</term>
<term>Biotite temperatures</term>
<term>Bottinga</term>
<term>Carmichael</term>
<term>Clinopyroxene</term>
<term>Coexisting</term>
<term>Contrib</term>
<term>Crust</term>
<term>Crustal</term>
<term>Crystallization</term>
<term>Depaolo</term>
<term>Diffusion data</term>
<term>Earth planet</term>
<term>Equilibration</term>
<term>Equilibration pressures</term>
<term>Eruption</term>
<term>Experimental study</term>
<term>Fractional</term>
<term>Fractional crystallization</term>
<term>Fugacity</term>
<term>Geol</term>
<term>Geotherm</term>
<term>Geothermometer</term>
<term>Ghiorso</term>
<term>Groundmass</term>
<term>Huijsmans</term>
<term>Hybrid</term>
<term>Kbar</term>
<term>Lava</term>
<term>Lavasfrom patmos</term>
<term>Lett</term>
<term>Leucite hills</term>
<term>Luhr</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma densities</term>
<term>Magmatic</term>
<term>Magnetite</term>
<term>Mica</term>
<term>Microprobe</term>
<term>Microprobe analyses</term>
<term>Monte amiata</term>
<term>Natural rocks</term>
<term>Netrachybasalt</term>
<term>Nisyros</term>
<term>Offo2</term>
<term>Olivine</term>
<term>Olivine xenocrysts</term>
<term>Oxidizing conditions</term>
<term>Oxygen fugacities</term>
<term>Oxygen fugacity</term>
<term>Patmos</term>
<term>Patmos lavas</term>
<term>Petrogenesis</term>
<term>Petrol</term>
<term>Petrology</term>
<term>Phenocryst</term>
<term>Phenocryst phases</term>
<term>Phenocrysts</term>
<term>Plagioclase</term>
<term>Polybaric</term>
<term>Potassic</term>
<term>Primary magma</term>
<term>Pyroxene</term>
<term>Roeder</term>
<term>Santorini</term>
<term>Silica activities</term>
<term>Silica activity</term>
<term>Silicate</term>
<term>Sio2</term>
<term>Solution model</term>
<term>State university</term>
<term>Stormer</term>
<term>Temperature estimates</term>
<term>Upper mantle</term>
<term>Utrecht</term>
<term>Values offo2</term>
<term>Various pressures</term>
<term>Volcanic rocks</term>
<term>Volcanol</term>
<term>Water content</term>
<term>Water contents</term>
<term>Weill</term>
<term>Wyers</term>
<term>Xenocryst</term>
<term>Xenocrysts</term>
<term>Xenolith</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Afmq</term>
<term>Alkaline</term>
<term>Alkaline lavas</term>
<term>Alkaline magmas</term>
<term>Amiata</term>
<term>Andesite</term>
<term>Ascent</term>
<term>Bartonand wyers</term>
<term>Basalt</term>
<term>Basaltic</term>
<term>Bergen</term>
<term>Biotite</term>
<term>Biotite temperatures</term>
<term>Bottinga</term>
<term>Carmichael</term>
<term>Clinopyroxene</term>
<term>Coexisting</term>
<term>Contrib</term>
<term>Crust</term>
<term>Crustal</term>
<term>Crystallization</term>
<term>Depaolo</term>
<term>Diffusion data</term>
<term>Earth planet</term>
<term>Equilibration</term>
<term>Equilibration pressures</term>
<term>Eruption</term>
<term>Experimental study</term>
<term>Fractional</term>
<term>Fractional crystallization</term>
<term>Fugacity</term>
<term>Geol</term>
<term>Geotherm</term>
<term>Geothermometer</term>
<term>Ghiorso</term>
<term>Groundmass</term>
<term>Huijsmans</term>
<term>Hybrid</term>
<term>Kbar</term>
<term>Lava</term>
<term>Lavasfrom patmos</term>
<term>Lett</term>
<term>Leucite hills</term>
<term>Luhr</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma densities</term>
<term>Magmatic</term>
<term>Magnetite</term>
<term>Mica</term>
<term>Microprobe</term>
<term>Microprobe analyses</term>
<term>Monte amiata</term>
<term>Natural rocks</term>
<term>Netrachybasalt</term>
<term>Nisyros</term>
<term>Offo2</term>
<term>Olivine</term>
<term>Olivine xenocrysts</term>
<term>Oxidizing conditions</term>
<term>Oxygen fugacities</term>
<term>Oxygen fugacity</term>
<term>Patmos</term>
<term>Patmos lavas</term>
<term>Petrogenesis</term>
<term>Petrol</term>
<term>Petrology</term>
<term>Phenocryst</term>
<term>Phenocryst phases</term>
<term>Phenocrysts</term>
<term>Plagioclase</term>
<term>Polybaric</term>
<term>Potassic</term>
<term>Primary magma</term>
<term>Pyroxene</term>
<term>Roeder</term>
<term>Santorini</term>
<term>Silica activities</term>
<term>Silica activity</term>
<term>Silicate</term>
<term>Sio2</term>
<term>Solution model</term>
<term>State university</term>
<term>Stormer</term>
<term>Temperature estimates</term>
<term>Upper mantle</term>
<term>Utrecht</term>
<term>Values offo2</term>
<term>Various pressures</term>
<term>Volcanic rocks</term>
<term>Volcanol</term>
<term>Water content</term>
<term>Water contents</term>
<term>Weill</term>
<term>Wyers</term>
<term>Xenocryst</term>
<term>Xenocrysts</term>
<term>Xenolith</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Essence</term>
<term>Pétrologie</term>
<term>Utrecht</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Various geothermometers and geobarometers are used to estimate the conditions at which magmas erupted on Patmos crystallized. Equilibrium phenocryst compositions are used as input data for the calculations and previously reported activity-composition relationships for minerals and melts are used. The results constitute an internally consistent set of estimates of T, P, PH2O and fO2, but there are large auncertainties in values of P(±2 kbar), PH2O (up to ±0.7 kb) and fO2 (up to ±1.4 log units). The ne-trachybasalt-hy-trachybasalt-hy-trachyandesite-Q-trachyte lavas of the Main Volcanic Series (MVS) crystallized over a temperature interval of 1173-920°C at 2–4 kbar. Water contents (calculated from PH2O) ranged from ≤2.5% in the least evolved magmas to 5–6% in the Q-trachytes. Oxygen fugacity (about 3 log units above values for the FMQ buffer) during crystallization of the ne-trachybasalt was similar to values for alkaline lavas from arcs and from oceanic islands. Calculated oxygen fugacities for crystallization of the evolved MVS magmas are lower (within about 1 log unit of the FMQ buffer) and this partly reflects uncertainties in calculation of the activity of annite. The ne-trachybasalts of the Young Volcanic Series (YVS) crystallized at 1141–1121 °C at values of fO2 about 2 log units above those defined by the FMQ buffer. These magmas contained 2.2–3.8% H2O prior to eruption. Crystallization of the YVS magmas was polybaric, and occurred over the pressure range 7–2 kbar. The higher pressure indicates that magma evolution began in chambers sites at or near the base of the crust (about 28 km).The results place constraints on models for the evolution of the magmas erupted on Patmos. The data are consistent with eruption of the MVS magmas from a single chamber sited at a depth of ≈11.5 km, or from several chambers sited over a depth interval of 8.5 to 14.5 km. The fO2-T data do not necessarily indicate that the trachyandesites and Q-trachytes are unrelated to the ne-trachybasalts. Other factors, such as assimilation and degassing prior to eruption, can lead to a lowering of fO2 during evolution. Polybaric crystallization of the YVS magmas as they traversed crust heated by previous magmatic activity is consistent with evolution via assimilation coupled with fractionation.The preservation of xenocrysts of mantle olivine in the primitive MVS and YVS ne-trachybasalts requires magma ascent times of less than about 78 days (calculated from published diffusion data). It is suggested that the YVS ne-trachybasalts experienced fractional crystallization in the mantle prior to picking up the xenocrysts. The phenocrysts in the MVS ne-trachybasalt record low-pressure (2–3 kbar) crystallization, indicating that either: (a) these magmas represent hybrids formed by mixing of a primitive, xenocryst-bearing magma with a more evolved magma; or (b) they evolved via fractional crystallization within the crust. Mixing is not consistent with mineralogical and geochemical data, and the latter alternative is preferred. Crystallization occurred rapidly, under supercooled conditions, when magma ascent was temporarily arrested in low-pressure chambers containing less-dense, evolved magmas (hy-trachybasalt to Q-trachyte). Fractionation probably reflects preferential nucleation and growth along the chamber margins. It is apparent that xenocryst-bearing magmas can evolve via fractional crystallization, and an important implication is that xenolith/xenocryst-bearing magmas may also assimilate crustal material. Hence, the trace-element and isotopic signatures of such magmas do not necessarily reflect those of the upper-mantle source region.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
</region>
<name sortKey="Wyers, G Paul" sort="Wyers, G Paul" uniqKey="Wyers G" first="G. Paul" last="Wyers">G. Paul Wyers</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000405 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000405 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:3DF30D94F5BF54F9ACB1B944706B20D0D3672B79
   |texte=   Estimates of P , T , P H2O and f O2 for lavas from Patmos (Greece) and implications for magmatic evolution
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021