Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Some remarks on volcanic vent evolution during plinian eruptions

Identifieur interne : 000364 ( Main/Exploration ); précédent : 000363; suivant : 000365

Some remarks on volcanic vent evolution during plinian eruptions

Auteurs : Johan C. Varekamp [États-Unis]

Source :

RBID : ISTEX:F76C442F9F63431F0C8990FA2F026CBF33CF84C9

English descriptors

Abstract

Abstract: The magma mass discharge rate governs the eruption magnitude of plinian eruptions, and depends strongly on conduit geometry. The presence of lithic clasts in pumice deposits results largely from conduit erosion, and the magma discharge rate and the lithic abundance in the resulting deposit are parameters linked by the overall vent widening rate. Many pumice fall deposits have lithic-enriched basal and top sections; pumice flow deposits tend to carry more lithics than the preceding fall layer. Theoretical models of vent evolution for a cylindrical conduit with radius R indicate an R4 dependency of the magma discharge rate, which would lead to rapidly decreasing lithic abundances from bottom to top in plinian fall deposits, and from fall to flow deposits, contrary to observations. To simulate observed lithic abundance patterns, a model of conduit evolution with a stepped geometry was developed, in which the lower conduit section remains at approximately constant radius, while the upper conduit section widens. The mass discharge rate during an eruption then increases with R2top, and predicted lithic abundance patterns agree qualitatively with field data. Field evidence for conduit widening in the upper conduit section only is presented from plinian pumice beds from Nisyros, Greece. The change in eruption style from plinian fall to surge and ash flow is sometimes accompanied by a dramatic change in lithic abundance and lithic type. In these cases, this transition in deposition style is not the result of a gradual increase in mass discharge rate because of overall vent widening, but is caused by catastrophic rupture of the lower vent section during incipient caldera collapse, with resulting changes in magma discharge rates, lithic abundance and possibly water/magma interaction.

Url:
DOI: 10.1016/0377-0273(93)90069-4


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Some remarks on volcanic vent evolution during plinian eruptions</title>
<author>
<name sortKey="Varekamp, Johan C" sort="Varekamp, Johan C" uniqKey="Varekamp J" first="Johan C." last="Varekamp">Johan C. Varekamp</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F76C442F9F63431F0C8990FA2F026CBF33CF84C9</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1016/0377-0273(93)90069-4</idno>
<idno type="url">https://api.istex.fr/document/F76C442F9F63431F0C8990FA2F026CBF33CF84C9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000078</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000078</idno>
<idno type="wicri:Area/Istex/Curation">000078</idno>
<idno type="wicri:Area/Istex/Checkpoint">000300</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000300</idno>
<idno type="wicri:doubleKey">0377-0273:1993:Varekamp J:some:remarks:on</idno>
<idno type="wicri:Area/Main/Merge">000374</idno>
<idno type="wicri:Area/Main/Curation">000364</idno>
<idno type="wicri:Area/Main/Exploration">000364</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Some remarks on volcanic vent evolution during plinian eruptions</title>
<author>
<name sortKey="Varekamp, Johan C" sort="Varekamp, Johan C" uniqKey="Varekamp J" first="Johan C." last="Varekamp">Johan C. Varekamp</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459-0139</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="ISSN">0377-0273</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993">1993</date>
<biblScope unit="volume">54</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="318">318</biblScope>
</imprint>
<idno type="ISSN">0377-0273</idno>
</series>
<idno type="istex">F76C442F9F63431F0C8990FA2F026CBF33CF84C9</idno>
<idno type="DOI">10.1016/0377-0273(93)90069-4</idno>
<idno type="PII">0377-0273(93)90069-4</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0377-0273</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barberi</term>
<term>Buoyancy forces</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Clast</term>
<term>Column collapse</term>
<term>Conduit</term>
<term>Conduit erosion</term>
<term>Conduit evolution</term>
<term>Conduit geometry</term>
<term>Deposit</term>
<term>Druitt</term>
<term>Eruption</term>
<term>Eruption sequence</term>
<term>Field data</term>
<term>Flow deposits</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Incipient caldera collapse</term>
<term>Lithic</term>
<term>Lithic abundance</term>
<term>Lithic abundance data</term>
<term>Lithic abundance patterns</term>
<term>Lithic abundances</term>
<term>Lithic clasts</term>
<term>Lithic contents</term>
<term>Lithics</term>
<term>Lower conduit section</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma discharge rate</term>
<term>Magma discharge rates</term>
<term>Plinian</term>
<term>Plinian deposits</term>
<term>Plinian eruptions</term>
<term>Plinian fall</term>
<term>Plinian fall deposits</term>
<term>Pumice</term>
<term>Pumice deposit</term>
<term>Pumice fall</term>
<term>Pumice flow</term>
<term>Sigurdsson</term>
<term>Stratigraphic</term>
<term>Upper conduit section</term>
<term>Varekamp</term>
<term>Vent erosion</term>
<term>Vent evolution</term>
<term>Volcanic vent evolution</term>
<term>Volcanol</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Barberi</term>
<term>Buoyancy forces</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Clast</term>
<term>Column collapse</term>
<term>Conduit</term>
<term>Conduit erosion</term>
<term>Conduit evolution</term>
<term>Conduit geometry</term>
<term>Deposit</term>
<term>Druitt</term>
<term>Eruption</term>
<term>Eruption sequence</term>
<term>Field data</term>
<term>Flow deposits</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Incipient caldera collapse</term>
<term>Lithic</term>
<term>Lithic abundance</term>
<term>Lithic abundance data</term>
<term>Lithic abundance patterns</term>
<term>Lithic abundances</term>
<term>Lithic clasts</term>
<term>Lithic contents</term>
<term>Lithics</term>
<term>Lower conduit section</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma discharge rate</term>
<term>Magma discharge rates</term>
<term>Plinian</term>
<term>Plinian deposits</term>
<term>Plinian eruptions</term>
<term>Plinian fall</term>
<term>Plinian fall deposits</term>
<term>Pumice</term>
<term>Pumice deposit</term>
<term>Pumice fall</term>
<term>Pumice flow</term>
<term>Sigurdsson</term>
<term>Stratigraphic</term>
<term>Upper conduit section</term>
<term>Varekamp</term>
<term>Vent erosion</term>
<term>Vent evolution</term>
<term>Volcanic vent evolution</term>
<term>Volcanol</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The magma mass discharge rate governs the eruption magnitude of plinian eruptions, and depends strongly on conduit geometry. The presence of lithic clasts in pumice deposits results largely from conduit erosion, and the magma discharge rate and the lithic abundance in the resulting deposit are parameters linked by the overall vent widening rate. Many pumice fall deposits have lithic-enriched basal and top sections; pumice flow deposits tend to carry more lithics than the preceding fall layer. Theoretical models of vent evolution for a cylindrical conduit with radius R indicate an R4 dependency of the magma discharge rate, which would lead to rapidly decreasing lithic abundances from bottom to top in plinian fall deposits, and from fall to flow deposits, contrary to observations. To simulate observed lithic abundance patterns, a model of conduit evolution with a stepped geometry was developed, in which the lower conduit section remains at approximately constant radius, while the upper conduit section widens. The mass discharge rate during an eruption then increases with R2top, and predicted lithic abundance patterns agree qualitatively with field data. Field evidence for conduit widening in the upper conduit section only is presented from plinian pumice beds from Nisyros, Greece. The change in eruption style from plinian fall to surge and ash flow is sometimes accompanied by a dramatic change in lithic abundance and lithic type. In these cases, this transition in deposition style is not the result of a gradual increase in mass discharge rate because of overall vent widening, but is caused by catastrophic rupture of the lower vent section during incipient caldera collapse, with resulting changes in magma discharge rates, lithic abundance and possibly water/magma interaction.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Varekamp, Johan C" sort="Varekamp, Johan C" uniqKey="Varekamp J" first="Johan C." last="Varekamp">Johan C. Varekamp</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000364 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000364 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F76C442F9F63431F0C8990FA2F026CBF33CF84C9
   |texte=   Some remarks on volcanic vent evolution during plinian eruptions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021