Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermodynamics of gas and steam-blast eruptions

Identifieur interne : 000339 ( Main/Exploration ); précédent : 000338; suivant : 000340

Thermodynamics of gas and steam-blast eruptions

Auteurs : L. G. Mastin [États-Unis]

Source :

RBID : ISTEX:72575A8532FD0E0A11BE5C2750111CCB19953ABC

Descripteurs français

English descriptors

Abstract

Abstract: Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures (‘boiling-point eruptions’); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic (‘gas eruptions’); and (3) those caused by rapid mixing of hot rock and ground- or surface water (‘mixing eruptions’). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (≤10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (≤∼1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (≤∼0.4 MJ/kg), and least for boiling-point eruptions (≤∼0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (v max) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (m r) near zero). For mixing eruptions, v max ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when m r is high, hence v max is low; (2) observations are made of large blocks the velocities of which may be less than the average for the mixture; (3) heat from solid particles is not efficiently transferred to the fluid during the eruptions; and (4) maximum velocities are reduced by choked flow or friction in the conduit.

Url:
DOI: 10.1007/BF00301399


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thermodynamics of gas and steam-blast eruptions</title>
<author>
<name sortKey="Mastin, L G" sort="Mastin, L G" uniqKey="Mastin L" first="L. G." last="Mastin">L. G. Mastin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:72575A8532FD0E0A11BE5C2750111CCB19953ABC</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1007/BF00301399</idno>
<idno type="url">https://api.istex.fr/document/72575A8532FD0E0A11BE5C2750111CCB19953ABC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000491</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000491</idno>
<idno type="wicri:Area/Istex/Curation">000491</idno>
<idno type="wicri:Area/Istex/Checkpoint">000275</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000275</idno>
<idno type="wicri:doubleKey">0258-8900:1995:Mastin L:thermodynamics:of:gas</idno>
<idno type="wicri:Area/Main/Merge">000346</idno>
<idno type="wicri:Area/Main/Curation">000339</idno>
<idno type="wicri:Area/Main/Exploration">000339</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Thermodynamics of gas and steam-blast eruptions</title>
<author>
<name sortKey="Mastin, L G" sort="Mastin, L G" uniqKey="Mastin L" first="L. G." last="Mastin">L. G. Mastin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cascades Volcano Observatory, US Geological Survey, 5400 MacArthur Boulevard, 98661, Vancouver, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Bulletin of Volcanology</title>
<title level="j" type="abbrev">Bull Volcanol</title>
<idno type="ISSN">0258-8900</idno>
<idno type="eISSN">1432-0819</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1995-04-01">1995-04-01</date>
<biblScope unit="volume">57</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="85">85</biblScope>
<biblScope unit="page" to="98">98</biblScope>
</imprint>
<idno type="ISSN">0258-8900</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0258-8900</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accretionary lapilli</term>
<term>Atmospheric pressure</term>
<term>Available energy</term>
<term>Ballistic blocks</term>
<term>Basalt flows</term>
<term>Basic principles</term>
<term>Bull volcanol</term>
<term>Christiansen</term>
<term>Conduit</term>
<term>Conduit collapse</term>
<term>Convective uplift</term>
<term>Country rock</term>
<term>Crater</term>
<term>Decker</term>
<term>Decompression</term>
<term>Deposit</term>
<term>Energy release</term>
<term>Englewood cliffs</term>
<term>Enthalpy</term>
<term>Enthalpy change</term>
<term>Entropy</term>
<term>Equilibrium temperature</term>
<term>Equivalent mass</term>
<term>Eruption</term>
<term>Eruption types</term>
<term>Eruption velocities</term>
<term>Eruptions galeras</term>
<term>Eruptive</term>
<term>Eruptive plume</term>
<term>Eruptive styles</term>
<term>Eruptive velocities</term>
<term>Eruptive vent</term>
<term>Eruptive vents</term>
<term>Exit velocities</term>
<term>Explosive eruptions</term>
<term>Explosive volcanism</term>
<term>External water</term>
<term>Final mixture</term>
<term>Final temperature</term>
<term>Final temperatures</term>
<term>Fluid phase</term>
<term>Fortran program</term>
<term>Friction factors</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geoth workshop</term>
<term>Geotherm</term>
<term>Geothermal systems</term>
<term>Geyser eruptions</term>
<term>Gray area</term>
<term>Heat transfer</term>
<term>Hedenquist</term>
<term>High values</term>
<term>Horiz</term>
<term>Hydroeruptions</term>
<term>Hydrothermal</term>
<term>Hydrothermal areas</term>
<term>Hydrothermal eruptions</term>
<term>Hydrothermal system</term>
<term>Incomplete heat transfer</term>
<term>Initial pressure</term>
<term>Initial stages</term>
<term>Initial state</term>
<term>Initial temperature</term>
<term>Initial temperatures</term>
<term>Internal energy</term>
<term>Internal shearing</term>
<term>Isentropic</term>
<term>Isentropic decompression</term>
<term>Kieffer</term>
<term>Kilauea volcano</term>
<term>Kinetic energy</term>
<term>Large blocks</term>
<term>Latter stages</term>
<term>Lava</term>
<term>Lava domes</term>
<term>Less energy</term>
<term>Liquid water</term>
<term>Magma</term>
<term>Magmatic</term>
<term>Magmatic eruptions</term>
<term>Magmatic temperatures</term>
<term>Mass fraction</term>
<term>Mass fraction rock</term>
<term>Mass fractions</term>
<term>Mastin</term>
<term>Maximum energy</term>
<term>Mechanical energy</term>
<term>Moyer</term>
<term>Nairn</term>
<term>National academy press</term>
<term>Optimal conditions</term>
<term>Other eruptions</term>
<term>Other factors</term>
<term>Other hand</term>
<term>Other state variables</term>
<term>Photos horiz</term>
<term>Phreatic eruptions</term>
<term>Phreatomagmatic</term>
<term>Phreatomagmatic eruptions</term>
<term>Plinian eruptions</term>
<term>Porous media</term>
<term>Pure water vapor</term>
<term>Pyroclastic flows</term>
<term>Rock fragments</term>
<term>Rootless eruptions</term>
<term>Secondary hydroeruptions</term>
<term>Seismic waves</term>
<term>Shock waves</term>
<term>Short duration</term>
<term>Smithsonian institution</term>
<term>Solid debris</term>
<term>Solid fraction</term>
<term>Solid material</term>
<term>Solid particles</term>
<term>Sonic velocities</term>
<term>Specific entropy</term>
<term>Specific heat</term>
<term>Specific volume</term>
<term>Stippled field</term>
<term>Such eruptions</term>
<term>Surface water</term>
<term>Surge deposits</term>
<term>Swanson</term>
<term>Theoretical velocities</term>
<term>Thermal energy</term>
<term>Thermal equilibration</term>
<term>Thermal equilibrium</term>
<term>Thermodynamic state</term>
<term>Thermodynamics</term>
<term>Total change</term>
<term>Total energy</term>
<term>Transient pressures</term>
<term>Unit mass</term>
<term>Unit volume</term>
<term>Unpublished data</term>
<term>Vertical line line</term>
<term>Violent eruptions</term>
<term>Volcanic</term>
<term>Volcanic explosion</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Volcanol geotherm</term>
<term>Vulcanian</term>
<term>Vulcanian eruptions</term>
<term>Water contents</term>
<term>Water temperatures</term>
<term>Water vapor</term>
<term>Wide range</term>
<term>Wiradiradja</term>
<term>Zealand</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accretionary lapilli</term>
<term>Atmospheric pressure</term>
<term>Available energy</term>
<term>Ballistic blocks</term>
<term>Basalt flows</term>
<term>Basic principles</term>
<term>Bull volcanol</term>
<term>Christiansen</term>
<term>Conduit</term>
<term>Conduit collapse</term>
<term>Convective uplift</term>
<term>Country rock</term>
<term>Crater</term>
<term>Decker</term>
<term>Decompression</term>
<term>Deposit</term>
<term>Energy release</term>
<term>Englewood cliffs</term>
<term>Enthalpy</term>
<term>Enthalpy change</term>
<term>Entropy</term>
<term>Equilibrium temperature</term>
<term>Equivalent mass</term>
<term>Eruption</term>
<term>Eruption types</term>
<term>Eruption velocities</term>
<term>Eruptions galeras</term>
<term>Eruptive</term>
<term>Eruptive plume</term>
<term>Eruptive styles</term>
<term>Eruptive velocities</term>
<term>Eruptive vent</term>
<term>Eruptive vents</term>
<term>Exit velocities</term>
<term>Explosive eruptions</term>
<term>Explosive volcanism</term>
<term>External water</term>
<term>Final mixture</term>
<term>Final temperature</term>
<term>Final temperatures</term>
<term>Fluid phase</term>
<term>Fortran program</term>
<term>Friction factors</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geoth workshop</term>
<term>Geotherm</term>
<term>Geothermal systems</term>
<term>Geyser eruptions</term>
<term>Gray area</term>
<term>Heat transfer</term>
<term>Hedenquist</term>
<term>High values</term>
<term>Horiz</term>
<term>Hydroeruptions</term>
<term>Hydrothermal</term>
<term>Hydrothermal areas</term>
<term>Hydrothermal eruptions</term>
<term>Hydrothermal system</term>
<term>Incomplete heat transfer</term>
<term>Initial pressure</term>
<term>Initial stages</term>
<term>Initial state</term>
<term>Initial temperature</term>
<term>Initial temperatures</term>
<term>Internal energy</term>
<term>Internal shearing</term>
<term>Isentropic</term>
<term>Isentropic decompression</term>
<term>Kieffer</term>
<term>Kilauea volcano</term>
<term>Kinetic energy</term>
<term>Large blocks</term>
<term>Latter stages</term>
<term>Lava</term>
<term>Lava domes</term>
<term>Less energy</term>
<term>Liquid water</term>
<term>Magma</term>
<term>Magmatic</term>
<term>Magmatic eruptions</term>
<term>Magmatic temperatures</term>
<term>Mass fraction</term>
<term>Mass fraction rock</term>
<term>Mass fractions</term>
<term>Mastin</term>
<term>Maximum energy</term>
<term>Mechanical energy</term>
<term>Moyer</term>
<term>Nairn</term>
<term>National academy press</term>
<term>Optimal conditions</term>
<term>Other eruptions</term>
<term>Other factors</term>
<term>Other hand</term>
<term>Other state variables</term>
<term>Photos horiz</term>
<term>Phreatic eruptions</term>
<term>Phreatomagmatic</term>
<term>Phreatomagmatic eruptions</term>
<term>Plinian eruptions</term>
<term>Porous media</term>
<term>Pure water vapor</term>
<term>Pyroclastic flows</term>
<term>Rock fragments</term>
<term>Rootless eruptions</term>
<term>Secondary hydroeruptions</term>
<term>Seismic waves</term>
<term>Shock waves</term>
<term>Short duration</term>
<term>Smithsonian institution</term>
<term>Solid debris</term>
<term>Solid fraction</term>
<term>Solid material</term>
<term>Solid particles</term>
<term>Sonic velocities</term>
<term>Specific entropy</term>
<term>Specific heat</term>
<term>Specific volume</term>
<term>Stippled field</term>
<term>Such eruptions</term>
<term>Surface water</term>
<term>Surge deposits</term>
<term>Swanson</term>
<term>Theoretical velocities</term>
<term>Thermal energy</term>
<term>Thermal equilibration</term>
<term>Thermal equilibrium</term>
<term>Thermodynamic state</term>
<term>Thermodynamics</term>
<term>Total change</term>
<term>Total energy</term>
<term>Transient pressures</term>
<term>Unit mass</term>
<term>Unit volume</term>
<term>Unpublished data</term>
<term>Vertical line line</term>
<term>Violent eruptions</term>
<term>Volcanic</term>
<term>Volcanic explosion</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Volcanol geotherm</term>
<term>Vulcanian</term>
<term>Vulcanian eruptions</term>
<term>Water contents</term>
<term>Water temperatures</term>
<term>Water vapor</term>
<term>Wide range</term>
<term>Wiradiradja</term>
<term>Zealand</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Offre énergétique</term>
<term>Eau superficielle</term>
<term>énergie thermique</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures (‘boiling-point eruptions’); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic (‘gas eruptions’); and (3) those caused by rapid mixing of hot rock and ground- or surface water (‘mixing eruptions’). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (≤10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (≤∼1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (≤∼0.4 MJ/kg), and least for boiling-point eruptions (≤∼0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (v max) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (m r) near zero). For mixing eruptions, v max ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when m r is high, hence v max is low; (2) observations are made of large blocks the velocities of which may be less than the average for the mixture; (3) heat from solid particles is not efficiently transferred to the fluid during the eruptions; and (4) maximum velocities are reduced by choked flow or friction in the conduit.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Mastin, L G" sort="Mastin, L G" uniqKey="Mastin L" first="L. G." last="Mastin">L. G. Mastin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000339 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000339 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:72575A8532FD0E0A11BE5C2750111CCB19953ABC
   |texte=   Thermodynamics of gas and steam-blast eruptions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021