Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamics and deposits generated by the Kos Plateau Tuff eruption: Controls of basal particle loss on pyroclastic flow transport

Identifieur interne : 000139 ( Main/Exploration ); précédent : 000138; suivant : 000140

Dynamics and deposits generated by the Kos Plateau Tuff eruption: Controls of basal particle loss on pyroclastic flow transport

Auteurs : Josef Dufek [États-Unis] ; George W. Bergantz [États-Unis]

Source :

RBID : ISTEX:A57D81CB02D063E37FF21463DE45794021767C86

Descripteurs français

English descriptors

Abstract

The explosive eruption of voluminous silicic magmas often produces widespread and massive deposits formed from pyroclastic density currents. While these punctuated events dramatically alter the landscape and have potential climate‐altering impact, our understanding of the internal structure and transport dynamics of these eruptions is hampered by a lack of direct observations. We utilize the natural boundary conditions encountered by the eruption of the Kos Plateau Tuff to probe its internal structure as well as constrain the neotectonic activity in the region and eruption duration of this moderate to large (>60 km3) event. At the time of the eruption, 161 ka, the lower sea level in the Mediterranean may have resulted in flows that traversed mostly land to the north of the eruptive vent, while flows to the south may have encountered an expanse of water. Steep topography and overwater transport can impede the transport of the dense basal portions of the flow where particles make multiple or sustained contact with the bed. We use an Eulerian‐Eulerian‐Lagrangian computational approach coupled with overwater and overland boundary conditions, including topography, to determine the role of bed load versus suspended load in the transport of these flows. We find that a ring vent structure and eruptive fluxes greater than ∼2 × 106 m3/s are required for the spatial distribution of the KPT. The maximum grain size and deposit locations of the first voluminous ignimbrite unit (D) can be explained by suspended flow to the south, consistent with overwater transport, and bed load and suspended load transport to the north, consistent with overland transport. However, the maximum lithic size for the largest and last ignimbrite unit (E) requires some bed load transport in all directions. We propose that the boundary conditions were significantly altered during the course of the eruption, through either the in‐filling of a shallow sea to the south or the development of a thick pumice raft to aid saltation. On the basis of the inferred eruptive flux, we estimate that the duration of the eruption climax, in which most of the material was erupted, likely only lasted from a few hours to a day.

Url:
DOI: 10.1029/2007GC001741


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamics and deposits generated by the Kos Plateau Tuff eruption: Controls of basal particle loss on pyroclastic flow transport</title>
<author>
<name sortKey="Dufek, Josef" sort="Dufek, Josef" uniqKey="Dufek J" first="Josef" last="Dufek">Josef Dufek</name>
</author>
<author>
<name sortKey="Bergantz, George W" sort="Bergantz, George W" uniqKey="Bergantz G" first="George W." last="Bergantz">George W. Bergantz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A57D81CB02D063E37FF21463DE45794021767C86</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1029/2007GC001741</idno>
<idno type="url">https://api.istex.fr/document/A57D81CB02D063E37FF21463DE45794021767C86/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000166</idno>
<idno type="wicri:Area/Istex/Curation">000166</idno>
<idno type="wicri:Area/Istex/Checkpoint">000095</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000095</idno>
<idno type="wicri:doubleKey">1525-2027:2007:Dufek J:dynamics:and:deposits</idno>
<idno type="wicri:Area/Main/Merge">000139</idno>
<idno type="wicri:Area/Main/Curation">000139</idno>
<idno type="wicri:Area/Main/Exploration">000139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Dynamics and deposits generated by the Kos Plateau Tuff eruption: Controls of basal particle loss on pyroclastic flow transport</title>
<author>
<name sortKey="Dufek, Josef" sort="Dufek, Josef" uniqKey="Dufek J" first="Josef" last="Dufek">Josef Dufek</name>
<affiliation wicri:level="3">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall,, California, 94720, Berkeley</wicri:regionArea>
<placeName>
<settlement type="city">Berkeley (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Bergantz, George W" sort="Bergantz, George W" uniqKey="Bergantz G" first="George W." last="Bergantz">George W. Bergantz</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Earth and Space Science, University of Washington, Washington, 98195, Seattle</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Geochemistry, Geophysics, Geosystems</title>
<title level="j" type="alt">GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS</title>
<idno type="ISSN">1525-2027</idno>
<idno type="eISSN">1525-2027</idno>
<imprint>
<biblScope unit="vol">8</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page-count">18</biblScope>
<date type="published" when="2007-12">2007-12</date>
</imprint>
<idno type="ISSN">1525-2027</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1525-2027</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient atmosphere</term>
<term>Atmospheric administration</term>
<term>Basal particle loss</term>
<term>Bergantz</term>
<term>Boilingover regime</term>
<term>Boundary conditions</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Caldera collapse style</term>
<term>Carrier fluid</term>
<term>Central vent</term>
<term>Clast</term>
<term>Column collapse</term>
<term>Column events</term>
<term>Column regime</term>
<term>Computer simulations</term>
<term>Constitutive relation</term>
<term>Constitutive relations</term>
<term>Deposit distribution</term>
<term>Dobran</term>
<term>Drag forces</term>
<term>Dufek</term>
<term>Eastern aegean</term>
<term>Eruption</term>
<term>Eruption climax</term>
<term>Eruptive</term>
<term>Eruptive column</term>
<term>Eruptive conditions</term>
<term>Eruptive flux</term>
<term>Eruptive fluxes</term>
<term>Fluid mech</term>
<term>Flux conditions</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Geotherm</term>
<term>Granular</term>
<term>Granular materials</term>
<term>Granular stress</term>
<term>Granular temperature</term>
<term>Gravity currents</term>
<term>Highest flux</term>
<term>Ignimbrite</term>
<term>Ignimbrite units</term>
<term>Ignimbrites</term>
<term>Inelastic particles</term>
<term>Internal structure</term>
<term>Kalymnos</term>
<term>Lagrangian</term>
<term>Lagrangian particle</term>
<term>Lagrangian particles</term>
<term>Large ignimbrite</term>
<term>Leaky</term>
<term>Leaky boundaries</term>
<term>Leaky boundary</term>
<term>Leaky boundary conditions</term>
<term>Level history</term>
<term>Lithic</term>
<term>Lithic clasts</term>
<term>Lithic fragments</term>
<term>Lithic size distribution</term>
<term>Lithics</term>
<term>Littoral blasts</term>
<term>Load transport</term>
<term>Maximum grain size</term>
<term>Maximum lithic size</term>
<term>Maximum lithic size distribution</term>
<term>Maximum lithic sizes</term>
<term>Maximum lithics</term>
<term>Minimum eruption duration</term>
<term>Momentum flux</term>
<term>Momentum transfer</term>
<term>Multiphase flow</term>
<term>National oceanic</term>
<term>Neotectonic subsidence</term>
<term>Numerical models</term>
<term>Numerical simulations</term>
<term>Overpressurized vent conditions</term>
<term>Overwater</term>
<term>Overwater transport</term>
<term>Particle</term>
<term>Particle concentration</term>
<term>Particle density</term>
<term>Particle phase</term>
<term>Particle phases</term>
<term>Particle velocity</term>
<term>Particle volume flux</term>
<term>Particle volume fraction</term>
<term>Phoenix columns</term>
<term>Plateau</term>
<term>Plateau tuff</term>
<term>Plateau tuff eruption</term>
<term>Plateau tuff eruption figure</term>
<term>Plateau tuff eruption table</term>
<term>Plinian</term>
<term>Plume</term>
<term>Preferential downwelling</term>
<term>Propagating pyroclastic density</term>
<term>Pumice</term>
<term>Pumice raft</term>
<term>Pyroclastic</term>
<term>Pyroclastic density</term>
<term>Pyroclastic density currents</term>
<term>Pyroclastic flow</term>
<term>Pyroclastic flow transport</term>
<term>Pyroclastic flows</term>
<term>Regime diagram</term>
<term>Rhyolitic eruption</term>
<term>Ring fracture configuration</term>
<term>Ring vent</term>
<term>Ring vent configuration</term>
<term>Ring vent geometry</term>
<term>Ring vent geometry eruption</term>
<term>Ring vent structure</term>
<term>Ring vents</term>
<term>Runout distance</term>
<term>Saltation</term>
<term>Saltation boundaries</term>
<term>Saltation boundary conditions</term>
<term>Saltation boundary simulation</term>
<term>Secondary plumes</term>
<term>Sieve data</term>
<term>Simulation</term>
<term>Simulation numbers</term>
<term>Size fractions</term>
<term>Solid continua</term>
<term>Solid continua velocity</term>
<term>Spatiotemporal variability</term>
<term>Standard atmosphere</term>
<term>Steam explosions</term>
<term>Thick pumice raft</term>
<term>Tilos</term>
<term>Time sequence</term>
<term>Topography conditions</term>
<term>Transient dynamics</term>
<term>Tuff</term>
<term>Turbulent flows</term>
<term>Turkish peninsula</term>
<term>Twodimensional simulations</term>
<term>Vent</term>
<term>Vent area</term>
<term>Vent conditions</term>
<term>Vent geometry</term>
<term>Vent location</term>
<term>Vent overpressure</term>
<term>Vent velocities</term>
<term>Volcanol</term>
<term>Volume flux</term>
<term>Volume fraction</term>
<term>Voluminous ignimbrites</term>
<term>Water surface</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Ambient atmosphere</term>
<term>Atmospheric administration</term>
<term>Basal particle loss</term>
<term>Bergantz</term>
<term>Boilingover regime</term>
<term>Boundary conditions</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Caldera collapse style</term>
<term>Carrier fluid</term>
<term>Central vent</term>
<term>Clast</term>
<term>Column collapse</term>
<term>Column events</term>
<term>Column regime</term>
<term>Computer simulations</term>
<term>Constitutive relation</term>
<term>Constitutive relations</term>
<term>Deposit distribution</term>
<term>Dobran</term>
<term>Drag forces</term>
<term>Dufek</term>
<term>Eastern aegean</term>
<term>Eruption</term>
<term>Eruption climax</term>
<term>Eruptive</term>
<term>Eruptive column</term>
<term>Eruptive conditions</term>
<term>Eruptive flux</term>
<term>Eruptive fluxes</term>
<term>Fluid mech</term>
<term>Flux conditions</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Geotherm</term>
<term>Granular</term>
<term>Granular materials</term>
<term>Granular stress</term>
<term>Granular temperature</term>
<term>Gravity currents</term>
<term>Highest flux</term>
<term>Ignimbrite</term>
<term>Ignimbrite units</term>
<term>Ignimbrites</term>
<term>Inelastic particles</term>
<term>Internal structure</term>
<term>Kalymnos</term>
<term>Lagrangian</term>
<term>Lagrangian particle</term>
<term>Lagrangian particles</term>
<term>Large ignimbrite</term>
<term>Leaky</term>
<term>Leaky boundaries</term>
<term>Leaky boundary</term>
<term>Leaky boundary conditions</term>
<term>Level history</term>
<term>Lithic</term>
<term>Lithic clasts</term>
<term>Lithic fragments</term>
<term>Lithic size distribution</term>
<term>Lithics</term>
<term>Littoral blasts</term>
<term>Load transport</term>
<term>Maximum grain size</term>
<term>Maximum lithic size</term>
<term>Maximum lithic size distribution</term>
<term>Maximum lithic sizes</term>
<term>Maximum lithics</term>
<term>Minimum eruption duration</term>
<term>Momentum flux</term>
<term>Momentum transfer</term>
<term>Multiphase flow</term>
<term>National oceanic</term>
<term>Neotectonic subsidence</term>
<term>Numerical models</term>
<term>Numerical simulations</term>
<term>Overpressurized vent conditions</term>
<term>Overwater</term>
<term>Overwater transport</term>
<term>Particle</term>
<term>Particle concentration</term>
<term>Particle density</term>
<term>Particle phase</term>
<term>Particle phases</term>
<term>Particle velocity</term>
<term>Particle volume flux</term>
<term>Particle volume fraction</term>
<term>Phoenix columns</term>
<term>Plateau</term>
<term>Plateau tuff</term>
<term>Plateau tuff eruption</term>
<term>Plateau tuff eruption figure</term>
<term>Plateau tuff eruption table</term>
<term>Plinian</term>
<term>Plume</term>
<term>Preferential downwelling</term>
<term>Propagating pyroclastic density</term>
<term>Pumice</term>
<term>Pumice raft</term>
<term>Pyroclastic</term>
<term>Pyroclastic density</term>
<term>Pyroclastic density currents</term>
<term>Pyroclastic flow</term>
<term>Pyroclastic flow transport</term>
<term>Pyroclastic flows</term>
<term>Regime diagram</term>
<term>Rhyolitic eruption</term>
<term>Ring fracture configuration</term>
<term>Ring vent</term>
<term>Ring vent configuration</term>
<term>Ring vent geometry</term>
<term>Ring vent geometry eruption</term>
<term>Ring vent structure</term>
<term>Ring vents</term>
<term>Runout distance</term>
<term>Saltation</term>
<term>Saltation boundaries</term>
<term>Saltation boundary conditions</term>
<term>Saltation boundary simulation</term>
<term>Secondary plumes</term>
<term>Sieve data</term>
<term>Simulation</term>
<term>Simulation numbers</term>
<term>Size fractions</term>
<term>Solid continua</term>
<term>Solid continua velocity</term>
<term>Spatiotemporal variability</term>
<term>Standard atmosphere</term>
<term>Steam explosions</term>
<term>Thick pumice raft</term>
<term>Tilos</term>
<term>Time sequence</term>
<term>Topography conditions</term>
<term>Transient dynamics</term>
<term>Tuff</term>
<term>Turbulent flows</term>
<term>Turkish peninsula</term>
<term>Twodimensional simulations</term>
<term>Vent</term>
<term>Vent area</term>
<term>Vent conditions</term>
<term>Vent geometry</term>
<term>Vent location</term>
<term>Vent overpressure</term>
<term>Vent velocities</term>
<term>Volcanol</term>
<term>Volume flux</term>
<term>Volume fraction</term>
<term>Voluminous ignimbrites</term>
<term>Water surface</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Géochimie</term>
<term>Géophysique</term>
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The explosive eruption of voluminous silicic magmas often produces widespread and massive deposits formed from pyroclastic density currents. While these punctuated events dramatically alter the landscape and have potential climate‐altering impact, our understanding of the internal structure and transport dynamics of these eruptions is hampered by a lack of direct observations. We utilize the natural boundary conditions encountered by the eruption of the Kos Plateau Tuff to probe its internal structure as well as constrain the neotectonic activity in the region and eruption duration of this moderate to large (>60 km3) event. At the time of the eruption, 161 ka, the lower sea level in the Mediterranean may have resulted in flows that traversed mostly land to the north of the eruptive vent, while flows to the south may have encountered an expanse of water. Steep topography and overwater transport can impede the transport of the dense basal portions of the flow where particles make multiple or sustained contact with the bed. We use an Eulerian‐Eulerian‐Lagrangian computational approach coupled with overwater and overland boundary conditions, including topography, to determine the role of bed load versus suspended load in the transport of these flows. We find that a ring vent structure and eruptive fluxes greater than ∼2 × 106 m3/s are required for the spatial distribution of the KPT. The maximum grain size and deposit locations of the first voluminous ignimbrite unit (D) can be explained by suspended flow to the south, consistent with overwater transport, and bed load and suspended load transport to the north, consistent with overland transport. However, the maximum lithic size for the largest and last ignimbrite unit (E) requires some bed load transport in all directions. We propose that the boundary conditions were significantly altered during the course of the eruption, through either the in‐filling of a shallow sea to the south or the development of a thick pumice raft to aid saltation. On the basis of the inferred eruptive flux, we estimate that the duration of the eruption climax, in which most of the material was erupted, likely only lasted from a few hours to a day.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Washington (État)</li>
</region>
<settlement>
<li>Berkeley (Californie)</li>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Dufek, Josef" sort="Dufek, Josef" uniqKey="Dufek J" first="Josef" last="Dufek">Josef Dufek</name>
</region>
<name sortKey="Bergantz, George W" sort="Bergantz, George W" uniqKey="Bergantz G" first="George W." last="Bergantz">George W. Bergantz</name>
<name sortKey="Dufek, Josef" sort="Dufek, Josef" uniqKey="Dufek J" first="Josef" last="Dufek">Josef Dufek</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000139 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000139 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:A57D81CB02D063E37FF21463DE45794021767C86
   |texte=   Dynamics and deposits generated by the Kos Plateau Tuff eruption: Controls of basal particle loss on pyroclastic flow transport
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021