Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gas geochemistry and seismotectonics: a review

Identifieur interne : 000511 ( Istex/Corpus ); précédent : 000510; suivant : 000512

Gas geochemistry and seismotectonics: a review

Auteurs : Jean-Paul Toutain ; Jean-Claude Baubron

Source :

RBID : ISTEX:AE517F95086858E601A040174D2E502EB83130F2

English descriptors

Abstract

Abstract: Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10−9, most of them being in the field of strain higher than 10−8. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.

Url:
DOI: 10.1016/S0040-1951(98)00295-9

Links to Exploration step

ISTEX:AE517F95086858E601A040174D2E502EB83130F2

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Gas geochemistry and seismotectonics: a review</title>
<author>
<name sortKey="Toutain, Jean Paul" sort="Toutain, Jean Paul" uniqKey="Toutain J" first="Jean-Paul" last="Toutain">Jean-Paul Toutain</name>
<affiliation>
<mods:affiliation>Observatoire Midi-Pyrénées, UMR CNRS 5563, Laboratoire de Géochimie, 38 rue des trente-six ponts, Toulouse, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baubron, Jean Claude" sort="Baubron, Jean Claude" uniqKey="Baubron J" first="Jean-Claude" last="Baubron">Jean-Claude Baubron</name>
<affiliation>
<mods:affiliation>BRGM, Service Géologique National, 45060 Orléans La Source, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AE517F95086858E601A040174D2E502EB83130F2</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0040-1951(98)00295-9</idno>
<idno type="url">https://api.istex.fr/document/AE517F95086858E601A040174D2E502EB83130F2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000511</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000511</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Gas geochemistry and seismotectonics: a review</title>
<author>
<name sortKey="Toutain, Jean Paul" sort="Toutain, Jean Paul" uniqKey="Toutain J" first="Jean-Paul" last="Toutain">Jean-Paul Toutain</name>
<affiliation>
<mods:affiliation>Observatoire Midi-Pyrénées, UMR CNRS 5563, Laboratoire de Géochimie, 38 rue des trente-six ponts, Toulouse, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baubron, Jean Claude" sort="Baubron, Jean Claude" uniqKey="Baubron J" first="Jean-Claude" last="Baubron">Jean-Claude Baubron</name>
<affiliation>
<mods:affiliation>BRGM, Service Géologique National, 45060 Orléans La Source, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Tectonophysics</title>
<title level="j" type="abbrev">TECTO</title>
<idno type="ISSN">0040-1951</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">304</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="27">27</biblScope>
</imprint>
<idno type="ISSN">0040-1951</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0040-1951</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active faults</term>
<term>Andreas</term>
<term>Andreas fault</term>
<term>Anomaly</term>
<term>Appl</term>
<term>Aquifer</term>
<term>Atmospheric pressure</term>
<term>Background values</term>
<term>Baubron</term>
<term>Baubron tectonophysics</term>
<term>Brgm report</term>
<term>Bulgaria</term>
<term>Carbon dioxide</term>
<term>Central california</term>
<term>Central japan</term>
<term>Continuous monitoring</term>
<term>Crust</term>
<term>Crustal</term>
<term>Degassing</term>
<term>Dioxide</term>
<term>Discrete measurements</term>
<term>Dubois</term>
<term>Earth planet</term>
<term>Earth tides</term>
<term>Earthquake</term>
<term>Earthquake magnitudes</term>
<term>Earthquake prediction</term>
<term>Epicentral</term>
<term>Epicentral distance</term>
<term>Epicentral distances</term>
<term>External factors</term>
<term>Fault</term>
<term>Fault activity</term>
<term>Fleischer</term>
<term>Focal mechanisms</term>
<term>Fracture</term>
<term>Geochemical</term>
<term>Geochemical anomalies</term>
<term>Geochemical precursors</term>
<term>Geochemistry</term>
<term>Geol</term>
<term>Geophys</term>
<term>Goddart</term>
<term>Granitic areas</term>
<term>Groundwater</term>
<term>Haicheng</term>
<term>Hauksson</term>
<term>Heterogeneity</term>
<term>Himachal pradesh</term>
<term>Humanante</term>
<term>Hydrothermal</term>
<term>Hydrothermal systems</term>
<term>Igarashi</term>
<term>Italian alps</term>
<term>Klusman</term>
<term>Kobe earthquake</term>
<term>Latter case</term>
<term>Lett</term>
<term>Literature data</term>
<term>Local conditions</term>
<term>Lungling</term>
<term>Main parameters</term>
<term>Mass spectrometer</term>
<term>Meteorological effects</term>
<term>Methane</term>
<term>Nagamine</term>
<term>Normal faults</term>
<term>Permeability</term>
<term>Pinault</term>
<term>Precursor</term>
<term>Precursory</term>
<term>Precursory time</term>
<term>Precursory time intervals</term>
<term>Prospection geochimique</term>
<term>Pure appl</term>
<term>Radon</term>
<term>Radon activities</term>
<term>Radon anomalies</term>
<term>Radon concentration</term>
<term>Radon concentrations</term>
<term>Radon data</term>
<term>Radon emanation</term>
<term>Radon monitoring</term>
<term>Radon variations</term>
<term>Reimer</term>
<term>Relative amplitudes</term>
<term>Sato</term>
<term>Science reviews</term>
<term>Seismic</term>
<term>Seismic activity</term>
<term>Seismic faults</term>
<term>Seismicity</term>
<term>Shapiro</term>
<term>Signal processing</term>
<term>Soil gases</term>
<term>Soil moisture</term>
<term>Southern spain</term>
<term>Spring gases</term>
<term>Sugisaki</term>
<term>Sugiura</term>
<term>Tangshan</term>
<term>Tangshan earthquake</term>
<term>Taschkent</term>
<term>Tectonic</term>
<term>Tectonophysics</term>
<term>Teng</term>
<term>Thermal springs</term>
<term>Thermal waters</term>
<term>Toutain</term>
<term>Transects</term>
<term>Travertine deposits</term>
<term>Uctuations</term>
<term>Uids</term>
<term>Uranium exploration</term>
<term>Virk</term>
<term>Volcanic</term>
<term>Volcanic environments</term>
<term>Wakita</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active faults</term>
<term>Andreas</term>
<term>Andreas fault</term>
<term>Anomaly</term>
<term>Appl</term>
<term>Aquifer</term>
<term>Atmospheric pressure</term>
<term>Background values</term>
<term>Baubron</term>
<term>Baubron tectonophysics</term>
<term>Brgm report</term>
<term>Bulgaria</term>
<term>Carbon dioxide</term>
<term>Central california</term>
<term>Central japan</term>
<term>Continuous monitoring</term>
<term>Crust</term>
<term>Crustal</term>
<term>Degassing</term>
<term>Dioxide</term>
<term>Discrete measurements</term>
<term>Dubois</term>
<term>Earth planet</term>
<term>Earth tides</term>
<term>Earthquake</term>
<term>Earthquake magnitudes</term>
<term>Earthquake prediction</term>
<term>Epicentral</term>
<term>Epicentral distance</term>
<term>Epicentral distances</term>
<term>External factors</term>
<term>Fault</term>
<term>Fault activity</term>
<term>Fleischer</term>
<term>Focal mechanisms</term>
<term>Fracture</term>
<term>Geochemical</term>
<term>Geochemical anomalies</term>
<term>Geochemical precursors</term>
<term>Geochemistry</term>
<term>Geol</term>
<term>Geophys</term>
<term>Goddart</term>
<term>Granitic areas</term>
<term>Groundwater</term>
<term>Haicheng</term>
<term>Hauksson</term>
<term>Heterogeneity</term>
<term>Himachal pradesh</term>
<term>Humanante</term>
<term>Hydrothermal</term>
<term>Hydrothermal systems</term>
<term>Igarashi</term>
<term>Italian alps</term>
<term>Klusman</term>
<term>Kobe earthquake</term>
<term>Latter case</term>
<term>Lett</term>
<term>Literature data</term>
<term>Local conditions</term>
<term>Lungling</term>
<term>Main parameters</term>
<term>Mass spectrometer</term>
<term>Meteorological effects</term>
<term>Methane</term>
<term>Nagamine</term>
<term>Normal faults</term>
<term>Permeability</term>
<term>Pinault</term>
<term>Precursor</term>
<term>Precursory</term>
<term>Precursory time</term>
<term>Precursory time intervals</term>
<term>Prospection geochimique</term>
<term>Pure appl</term>
<term>Radon</term>
<term>Radon activities</term>
<term>Radon anomalies</term>
<term>Radon concentration</term>
<term>Radon concentrations</term>
<term>Radon data</term>
<term>Radon emanation</term>
<term>Radon monitoring</term>
<term>Radon variations</term>
<term>Reimer</term>
<term>Relative amplitudes</term>
<term>Sato</term>
<term>Science reviews</term>
<term>Seismic</term>
<term>Seismic activity</term>
<term>Seismic faults</term>
<term>Seismicity</term>
<term>Shapiro</term>
<term>Signal processing</term>
<term>Soil gases</term>
<term>Soil moisture</term>
<term>Southern spain</term>
<term>Spring gases</term>
<term>Sugisaki</term>
<term>Sugiura</term>
<term>Tangshan</term>
<term>Tangshan earthquake</term>
<term>Taschkent</term>
<term>Tectonic</term>
<term>Tectonophysics</term>
<term>Teng</term>
<term>Thermal springs</term>
<term>Thermal waters</term>
<term>Toutain</term>
<term>Transects</term>
<term>Travertine deposits</term>
<term>Uctuations</term>
<term>Uids</term>
<term>Uranium exploration</term>
<term>Virk</term>
<term>Volcanic</term>
<term>Volcanic environments</term>
<term>Wakita</term>
<term>Wide range</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10−9, most of them being in the field of strain higher than 10−8. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>radon</json:string>
<json:string>hauksson</json:string>
<json:string>geophys</json:string>
<json:string>baubron</json:string>
<json:string>sugisaki</json:string>
<json:string>anomaly</json:string>
<json:string>toutain</json:string>
<json:string>geochemical</json:string>
<json:string>precursor</json:string>
<json:string>tectonophysics</json:string>
<json:string>epicentral</json:string>
<json:string>baubron tectonophysics</json:string>
<json:string>wakita</json:string>
<json:string>fleischer</json:string>
<json:string>lett</json:string>
<json:string>appl</json:string>
<json:string>spring gases</json:string>
<json:string>precursory</json:string>
<json:string>earthquake prediction</json:string>
<json:string>pure appl</json:string>
<json:string>degassing</json:string>
<json:string>epicentral distances</json:string>
<json:string>crustal</json:string>
<json:string>shapiro</json:string>
<json:string>reimer</json:string>
<json:string>permeability</json:string>
<json:string>soil gases</json:string>
<json:string>uids</json:string>
<json:string>hydrothermal</json:string>
<json:string>uctuations</json:string>
<json:string>virk</json:string>
<json:string>nagamine</json:string>
<json:string>atmospheric pressure</json:string>
<json:string>pinault</json:string>
<json:string>active faults</json:string>
<json:string>teng</json:string>
<json:string>andreas</json:string>
<json:string>igarashi</json:string>
<json:string>continuous monitoring</json:string>
<json:string>sugiura</json:string>
<json:string>groundwater</json:string>
<json:string>seismic</json:string>
<json:string>andreas fault</json:string>
<json:string>heterogeneity</json:string>
<json:string>geol</json:string>
<json:string>goddart</json:string>
<json:string>soil moisture</json:string>
<json:string>tangshan</json:string>
<json:string>tectonic</json:string>
<json:string>haicheng</json:string>
<json:string>sato</json:string>
<json:string>seismicity</json:string>
<json:string>radon concentration</json:string>
<json:string>humanante</json:string>
<json:string>carbon dioxide</json:string>
<json:string>methane</json:string>
<json:string>transects</json:string>
<json:string>taschkent</json:string>
<json:string>klusman</json:string>
<json:string>aquifer</json:string>
<json:string>lungling</json:string>
<json:string>earthquake</json:string>
<json:string>fracture</json:string>
<json:string>crust</json:string>
<json:string>thermal springs</json:string>
<json:string>earth planet</json:string>
<json:string>hydrothermal systems</json:string>
<json:string>radon monitoring</json:string>
<json:string>external factors</json:string>
<json:string>epicentral distance</json:string>
<json:string>geochemical anomalies</json:string>
<json:string>geochemical precursors</json:string>
<json:string>science reviews</json:string>
<json:string>seismic activity</json:string>
<json:string>bulgaria</json:string>
<json:string>central japan</json:string>
<json:string>earth tides</json:string>
<json:string>brgm report</json:string>
<json:string>thermal waters</json:string>
<json:string>seismic faults</json:string>
<json:string>italian alps</json:string>
<json:string>radon activities</json:string>
<json:string>southern spain</json:string>
<json:string>radon anomalies</json:string>
<json:string>latter case</json:string>
<json:string>radon emanation</json:string>
<json:string>dubois</json:string>
<json:string>focal mechanisms</json:string>
<json:string>background values</json:string>
<json:string>mass spectrometer</json:string>
<json:string>granitic areas</json:string>
<json:string>fault activity</json:string>
<json:string>radon concentrations</json:string>
<json:string>discrete measurements</json:string>
<json:string>meteorological effects</json:string>
<json:string>main parameters</json:string>
<json:string>volcanic environments</json:string>
<json:string>kobe earthquake</json:string>
<json:string>uranium exploration</json:string>
<json:string>radon variations</json:string>
<json:string>wide range</json:string>
<json:string>central california</json:string>
<json:string>travertine deposits</json:string>
<json:string>normal faults</json:string>
<json:string>prospection geochimique</json:string>
<json:string>precursory time intervals</json:string>
<json:string>himachal pradesh</json:string>
<json:string>tangshan earthquake</json:string>
<json:string>relative amplitudes</json:string>
<json:string>literature data</json:string>
<json:string>earthquake magnitudes</json:string>
<json:string>radon data</json:string>
<json:string>local conditions</json:string>
<json:string>signal processing</json:string>
<json:string>precursory time</json:string>
<json:string>dioxide</json:string>
<json:string>fault</json:string>
<json:string>geochemistry</json:string>
<json:string>volcanic</json:string>
<json:string>volcano</json:string>
<json:string>emanation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jean-Paul Toutain</name>
<affiliations>
<json:string>Observatoire Midi-Pyrénées, UMR CNRS 5563, Laboratoire de Géochimie, 38 rue des trente-six ponts, Toulouse, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean-Claude Baubron</name>
<affiliations>
<json:string>BRGM, Service Géologique National, 45060 Orléans La Source, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>precursors</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>earthquake prediction</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil gases</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spring gases</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10−9, most of them being in the field of strain higher than 10−8. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>546 x 746 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>2852</abstractCharCount>
<pdfWordCount>13958</pdfWordCount>
<pdfCharCount>91205</pdfCharCount>
<pdfPageCount>27</pdfPageCount>
<abstractWordCount>421</abstractWordCount>
</qualityIndicators>
<title>Gas geochemistry and seismotectonics: a review</title>
<pii>
<json:string>S0040-1951(98)00295-9</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Tectonophysics</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1999</publicationDate>
<issn>
<json:string>0040-1951</json:string>
</issn>
<pii>
<json:string>S0040-1951(00)X0099-6</json:string>
</pii>
<volume>304</volume>
<issue>1–2</issue>
<pages>
<first>1</first>
<last>27</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0040-1951(98)00295-9</json:string>
</doi>
<id>AE517F95086858E601A040174D2E502EB83130F2</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/AE517F95086858E601A040174D2E502EB83130F2/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/AE517F95086858E601A040174D2E502EB83130F2/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/AE517F95086858E601A040174D2E502EB83130F2/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Gas geochemistry and seismotectonics: a review</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Schematic diagram of discrete and in-situ measurements of soil gases. Cardboard tubes prevent atmospheric air contamination, and allow both air sampling at constant depth and repetition of profiles in similar conditions.</note>
<note type="content">Fig. 2: Geochemical transect across the graben of Draginovo (Bulgaria). Sampling step 10 m. Analyses are performed in the field by mass spectrometry for N2, O2, Ar and He, by infra-red spectrometry for CO2, and by alpha counting for 222Rn. Values are in vol.% (CO2 and Rn), ppmV (He) and pCi/l (Rn). These techniques have been already used in volcanic environments (Baubron et al. 1990, 1991; Toutain et al., 1992).</note>
<note type="content">Fig. 3: Geochemical transects (A, B, C, D) across the Argentera–Vinadio fault (Argentera–Mercantour massif, Italian Alps). Soil gases are sampled at dephts of 0.7–1.0 m in the ground by using stainless-steel probes, 1 cm diameter, filled with a Teflon capillary. Sampling step is usually of 10 m, sometimes 5 m. Horizontal axes are distances in meters. Open squares, open lozanges and filled lozanges are CO2 (%), Ar (%), and He (ppm) concentrations, respectively. Analyses are made by mass spectrometer and infra-red spectrometer. Helium concentration in air is 5.24 ppm, and soil He background values are about 5.3 ± 0.3 ppm. He anomalies are therefore defined as values above 5.7 ppm (solid horizontal line on graphs). Both punctual and scattered He anomalies recorded on the A and C transects, respectively, suggest deep rooting of the fault. The negative helium anomalies of transects B and D suggest meteoric water infiltration processes with subsequent solubilization of He. Carbon dioxide levels lie within biogenic activity. From Baubron (1988).</note>
<note type="content">Fig. 4: Time-series of rainfall (Rf, mm/h), soil moisture (Hum, in g H2O/100 g soil), atmospheric pressure (P, mm Hg), atmospheric temperature (Ta, °C) and Rn (counts per hour) measured in a soil in southern Spain over a hidden sulfide deposit. Radon is measured at 4 sites located within 500 m by using automated radon monitors (alpha counters equiped with a static silicon detector). Sampling rate is 1 measure/h. See Pinault and Baubron (1996)for mutichannel spectral analysis of these signals.</note>
<note type="content">Fig. 5: Example of a soil radon anomaly created by soil water content changes. After a 3-month period of a stable regime emanation for radon measured at 90 cm depth in the ground at Irazu Volcano, displaying a mean value of 15,000±5000 Bq/m3, an anomaly up to 50,000 Bq/m3 lasted for 10 days and was followed by oscillations between 10,000 and 20,000 Bq/m3. The anomaly corresponds to a tropical trough which was followed by an atmospheric unsteadiness for 1 month. The daily fluctuations of Rn (1 or 2 cycle/day) are evidence to the advective regime of the emanating gas carring Rn. Monitoring of soil radon with Barasol probes. Station I7. Irazu volcano, Costa-Rica.</note>
<note type="content">Fig. 6: Geochemical discrimination between soil and spring gases from faulted zones of central Japan, from Sugisaki et al. (1983). He/Ar and N2/Ar are normalized by the ratios in atmospheric air. Lines of unity represent atmospheric air composition. Filled squares are spring gases, open squares are soil gases. This representation outlines the high degree of contamination of soil gases by atmospheric air. Note the spring gas composition from Inuyama in the field of soil gases (He: 7.3 ppm), probably as the result of air contamination due to a low discharge of water (Sugisaki and Sugiura, 1986).</note>
<note type="content">Fig. 7: He–CO2 systematics for soil and spring gases. Soil data are from geochemical traverses performed across the following faults: Santa-Anna (Argentera, Italian Alps), Marie-Galante (French Guadeloupe), Draginovo (Bulgaria) and Les Salles (French Ardèche). See Baubron (1988, 1989a, b, 1990)for details. Spring analyses are from east Bulgaria (Piperov et al., 1994) and French Ardèche and Alps (Marty et al., 1992).</note>
<note type="content">Fig. 8: Plot of the epicentral distances versus magnitudes for data listed in Table 1. Open and filled squares represent Rn and other gas anomalies, respectively. Greyish lozenges correspond to Rn values obtained in Himachal Pradesh (India) by Virk (1995). Plain lines characterize the relationship between strain radius and magnitudes for strains ranging from 10−7 to 10−9 using the empirical reationship proposed by Dobrovolsky et al. (1989)on the basis of an ellipsoidal earthquake preparation zone that produces a long-range strain field under stress. The single bold line characterizes the empirical relationship of Fleischer (1981)who calibrated the maximum distance of a radon anomaly for a given magnitude on the basis of a shear dislocation of an earthquake. Dashed line L characterizes typical rupture length of active faults as a function of magnitude by using the empirical law of Aki and Richards (1980).</note>
<note type="content">Fig. 9: Plot of relative amplitudes (A) (log scale), (B) time lag (time between the onset of the anomaly and the related earthquake, in days) and duration (C) (in days) of anomalies listed in Table 1 as a function of magnitudes. A general increase of maximum time lag and duration is seen with increasing magnitude.</note>
<note type="content">Fig. 10: Plot of relative amplitudes (log scale), time lag (time between the onset of the anomaly and the related earthquake, in days) and duration (in days) of anomalies listed in Table 1 as a function of epicentral distances for selected magnitudes. Dots, squares and lozenges display earthquakes with magnitudes 0–3, 3–6 and 6–9, respectively. As in Fig. 9, a general increase of maximum time lag and duration is seen with increasing epicentral distance.</note>
<note type="content">Table 1: List of gas precursors related in literature</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Gas geochemistry and seismotectonics: a review</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Jean-Paul</forename>
<surname>Toutain</surname>
</persName>
<affiliation>Observatoire Midi-Pyrénées, UMR CNRS 5563, Laboratoire de Géochimie, 38 rue des trente-six ponts, Toulouse, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Jean-Claude</forename>
<surname>Baubron</surname>
</persName>
<affiliation>BRGM, Service Géologique National, 45060 Orléans La Source, France</affiliation>
</author>
<idno type="istex">AE517F95086858E601A040174D2E502EB83130F2</idno>
<idno type="DOI">10.1016/S0040-1951(98)00295-9</idno>
<idno type="PII">S0040-1951(98)00295-9</idno>
</analytic>
<monogr>
<title level="j">Tectonophysics</title>
<title level="j" type="abbrev">TECTO</title>
<idno type="pISSN">0040-1951</idno>
<idno type="PII">S0040-1951(00)X0099-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">304</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="27">27</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10−9, most of them being in the field of strain higher than 10−8. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>precursors</term>
</item>
<item>
<term>earthquake prediction</term>
</item>
<item>
<term>soil gases</term>
</item>
<item>
<term>spring gases</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/AE517F95086858E601A040174D2E502EB83130F2/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>TECTO</jid>
<aid>5706</aid>
<ce:pii>S0040-1951(98)00295-9</ce:pii>
<ce:doi>10.1016/S0040-1951(98)00295-9</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Gas geochemistry and seismotectonics: a review</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Jean-Paul</ce:given-name>
<ce:surname>Toutain</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jean-Claude</ce:given-name>
<ce:surname>Baubron</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Observatoire Midi-Pyrénées, UMR CNRS 5563, Laboratoire de Géochimie, 38 rue des trente-six ponts, Toulouse, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>BRGM, Service Géologique National, 45060 Orléans La Source, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Fax: +33 561 5505 44; E-mail: toutain@lucid.ups-tlse.fr</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="16" month="1" year="1998"></ce:date-received>
<ce:date-accepted day="20" month="11" year="1998"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10
<ce:sup>−9</ce:sup>
, most of them being in the field of strain higher than 10
<ce:sup>−8</ce:sup>
. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>precursors</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>earthquake prediction</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>soil gases</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>spring gases</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Gas geochemistry and seismotectonics: a review</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Gas geochemistry and seismotectonics: a review</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean-Paul</namePart>
<namePart type="family">Toutain</namePart>
<affiliation>Observatoire Midi-Pyrénées, UMR CNRS 5563, Laboratoire de Géochimie, 38 rue des trente-six ponts, Toulouse, France</affiliation>
<description>Corresponding author. Fax: +33 561 5505 44; E-mail: toutain@lucid.ups-tlse.fr</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Claude</namePart>
<namePart type="family">Baubron</namePart>
<affiliation>BRGM, Service Géologique National, 45060 Orléans La Source, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Publications on soil and spring gases have been examined regarding their relationships with both tectonic and seismic activities. The main sources, behaviours and uses of species detected in soils and springs are displayed, and their mode of sampling and analysing briefly described. The main patterns of degassing in soils are described and we outline the wide range of geochemical signatures as the result of both permeability and mineralogical contrasts. Because thermomineral waters have been in contact with great volumes of crustal rocks at various depths, spring gases might be more representative of the local environment than soil gases. Moreover, gas signature comparisons show that spring gases are much more enriched with deep gases and slightly contaminated by atmospheric gases. Therefore, they can be considered as better samples for identifying precursors of earthquakes. Environmental perturbations are examined, and it is shown from divergent cases that pressure, temperature, soil moisture or earth tides may generate very high perturbations of the degassing process. Such effects demonstrate that no systematic correction law can be proposed and that removing external contributions from gas concentrations must be performed case by case. This demonstrates therefore the need for the simultaneous measurement of external parameters during gas monitoring. A qualitative examination of about 150 claimed precursors proposed in the literature has been reviewed. As noted by previous authors, anomalies appear at distances sometimes much greater than typical source dimensions, and occur in the field of strain higher than 10−9, most of them being in the field of strain higher than 10−8. Taking into account the very high heterogeneity of such a set of data, we can suggest that amplitudes of gas anomalies are independent of both magnitudes and epicentral distances of related earthquakes, suggesting local conditions to control amplitudes. On the contrary, precursory time and duration of anomalies seem to increase both with magnitudes and epicentral distances. Abundant evidence demonstrates the major role of crustal fluids in the earthquake cycle. Many works have outlined the fact that crustal instabilities can appear as the result of low stress/strain perturbations during loading. It has been suggested that motion of fluids may occur at various scales, from microcrack fluid transfer up to changes of hydraulic levels of water tables. The study of subsequent anomalies is expected to supply a tool for earthquake prediction. Following previous authors, we outline the need for further methodological improvements, including the setting up of multiparameter station networks and the simultaneous recording of the main external parameters (atmospheric pressure, water and air temperature, soil moisture) for signal processing.</abstract>
<note type="content">Fig. 1: Schematic diagram of discrete and in-situ measurements of soil gases. Cardboard tubes prevent atmospheric air contamination, and allow both air sampling at constant depth and repetition of profiles in similar conditions.</note>
<note type="content">Fig. 2: Geochemical transect across the graben of Draginovo (Bulgaria). Sampling step 10 m. Analyses are performed in the field by mass spectrometry for N2, O2, Ar and He, by infra-red spectrometry for CO2, and by alpha counting for 222Rn. Values are in vol.% (CO2 and Rn), ppmV (He) and pCi/l (Rn). These techniques have been already used in volcanic environments (Baubron et al. 1990, 1991; Toutain et al., 1992).</note>
<note type="content">Fig. 3: Geochemical transects (A, B, C, D) across the Argentera–Vinadio fault (Argentera–Mercantour massif, Italian Alps). Soil gases are sampled at dephts of 0.7–1.0 m in the ground by using stainless-steel probes, 1 cm diameter, filled with a Teflon capillary. Sampling step is usually of 10 m, sometimes 5 m. Horizontal axes are distances in meters. Open squares, open lozanges and filled lozanges are CO2 (%), Ar (%), and He (ppm) concentrations, respectively. Analyses are made by mass spectrometer and infra-red spectrometer. Helium concentration in air is 5.24 ppm, and soil He background values are about 5.3 ± 0.3 ppm. He anomalies are therefore defined as values above 5.7 ppm (solid horizontal line on graphs). Both punctual and scattered He anomalies recorded on the A and C transects, respectively, suggest deep rooting of the fault. The negative helium anomalies of transects B and D suggest meteoric water infiltration processes with subsequent solubilization of He. Carbon dioxide levels lie within biogenic activity. From Baubron (1988).</note>
<note type="content">Fig. 4: Time-series of rainfall (Rf, mm/h), soil moisture (Hum, in g H2O/100 g soil), atmospheric pressure (P, mm Hg), atmospheric temperature (Ta, °C) and Rn (counts per hour) measured in a soil in southern Spain over a hidden sulfide deposit. Radon is measured at 4 sites located within 500 m by using automated radon monitors (alpha counters equiped with a static silicon detector). Sampling rate is 1 measure/h. See Pinault and Baubron (1996)for mutichannel spectral analysis of these signals.</note>
<note type="content">Fig. 5: Example of a soil radon anomaly created by soil water content changes. After a 3-month period of a stable regime emanation for radon measured at 90 cm depth in the ground at Irazu Volcano, displaying a mean value of 15,000±5000 Bq/m3, an anomaly up to 50,000 Bq/m3 lasted for 10 days and was followed by oscillations between 10,000 and 20,000 Bq/m3. The anomaly corresponds to a tropical trough which was followed by an atmospheric unsteadiness for 1 month. The daily fluctuations of Rn (1 or 2 cycle/day) are evidence to the advective regime of the emanating gas carring Rn. Monitoring of soil radon with Barasol probes. Station I7. Irazu volcano, Costa-Rica.</note>
<note type="content">Fig. 6: Geochemical discrimination between soil and spring gases from faulted zones of central Japan, from Sugisaki et al. (1983). He/Ar and N2/Ar are normalized by the ratios in atmospheric air. Lines of unity represent atmospheric air composition. Filled squares are spring gases, open squares are soil gases. This representation outlines the high degree of contamination of soil gases by atmospheric air. Note the spring gas composition from Inuyama in the field of soil gases (He: 7.3 ppm), probably as the result of air contamination due to a low discharge of water (Sugisaki and Sugiura, 1986).</note>
<note type="content">Fig. 7: He–CO2 systematics for soil and spring gases. Soil data are from geochemical traverses performed across the following faults: Santa-Anna (Argentera, Italian Alps), Marie-Galante (French Guadeloupe), Draginovo (Bulgaria) and Les Salles (French Ardèche). See Baubron (1988, 1989a, b, 1990)for details. Spring analyses are from east Bulgaria (Piperov et al., 1994) and French Ardèche and Alps (Marty et al., 1992).</note>
<note type="content">Fig. 8: Plot of the epicentral distances versus magnitudes for data listed in Table 1. Open and filled squares represent Rn and other gas anomalies, respectively. Greyish lozenges correspond to Rn values obtained in Himachal Pradesh (India) by Virk (1995). Plain lines characterize the relationship between strain radius and magnitudes for strains ranging from 10−7 to 10−9 using the empirical reationship proposed by Dobrovolsky et al. (1989)on the basis of an ellipsoidal earthquake preparation zone that produces a long-range strain field under stress. The single bold line characterizes the empirical relationship of Fleischer (1981)who calibrated the maximum distance of a radon anomaly for a given magnitude on the basis of a shear dislocation of an earthquake. Dashed line L characterizes typical rupture length of active faults as a function of magnitude by using the empirical law of Aki and Richards (1980).</note>
<note type="content">Fig. 9: Plot of relative amplitudes (A) (log scale), (B) time lag (time between the onset of the anomaly and the related earthquake, in days) and duration (C) (in days) of anomalies listed in Table 1 as a function of magnitudes. A general increase of maximum time lag and duration is seen with increasing magnitude.</note>
<note type="content">Fig. 10: Plot of relative amplitudes (log scale), time lag (time between the onset of the anomaly and the related earthquake, in days) and duration (in days) of anomalies listed in Table 1 as a function of epicentral distances for selected magnitudes. Dots, squares and lozenges display earthquakes with magnitudes 0–3, 3–6 and 6–9, respectively. As in Fig. 9, a general increase of maximum time lag and duration is seen with increasing epicentral distance.</note>
<note type="content">Table 1: List of gas precursors related in literature</note>
<subject>
<genre>Keywords</genre>
<topic>precursors</topic>
<topic>earthquake prediction</topic>
<topic>soil gases</topic>
<topic>spring gases</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Tectonophysics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>TECTO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19990330</dateIssued>
</originInfo>
<identifier type="ISSN">0040-1951</identifier>
<identifier type="PII">S0040-1951(00)X0099-6</identifier>
<part>
<date>19990330</date>
<detail type="volume">
<number>304</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>156</end>
</extent>
<extent unit="pages">
<start>1</start>
<end>27</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">AE517F95086858E601A040174D2E502EB83130F2</identifier>
<identifier type="ark">ark:/67375/6H6-97Q8R8P1-2</identifier>
<identifier type="DOI">10.1016/S0040-1951(98)00295-9</identifier>
<identifier type="PII">S0040-1951(98)00295-9</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/AE517F95086858E601A040174D2E502EB83130F2/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000511 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000511 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:AE517F95086858E601A040174D2E502EB83130F2
   |texte=   Gas geochemistry and seismotectonics: a review
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021