Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano

Identifieur interne : 000509 ( Istex/Corpus ); précédent : 000508; suivant : 000510

Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano

Auteurs : Rolf Schumacher ; Hans-Ulrich Schmincke

Source :

RBID : ISTEX:06F10A19476E0C694DE9296D6C7D1DA17079086D

English descriptors

Abstract

Abstract: Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 μm and a maximum grain size of 250 to 350 μm. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 μm and a maximum grain size of 350 to 500 μm. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 μm and a maximum grain size up to 2 mm.

Url:
DOI: 10.1007/BF00493689

Links to Exploration step

ISTEX:06F10A19476E0C694DE9296D6C7D1DA17079086D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</title>
<author>
<name sortKey="Schumacher, Rolf" sort="Schumacher, Rolf" uniqKey="Schumacher R" first="Rolf" last="Schumacher">Rolf Schumacher</name>
<affiliation>
<mods:affiliation>Mineralogisch-petrographisches Institut, Albert-Ludwigs Universität, Albertstrasse 23B, W-7800, Freiburg i. Br., Federal Republic of Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmincke, Hans Ulrich" sort="Schmincke, Hans Ulrich" uniqKey="Schmincke H" first="Hans-Ulrich" last="Schmincke">Hans-Ulrich Schmincke</name>
<affiliation>
<mods:affiliation>GEOMAR, Wischhofstrasse 1-3, W-2300, Kiel 14, Federal Republic of Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:06F10A19476E0C694DE9296D6C7D1DA17079086D</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1007/BF00493689</idno>
<idno type="url">https://api.istex.fr/document/06F10A19476E0C694DE9296D6C7D1DA17079086D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000509</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</title>
<author>
<name sortKey="Schumacher, Rolf" sort="Schumacher, Rolf" uniqKey="Schumacher R" first="Rolf" last="Schumacher">Rolf Schumacher</name>
<affiliation>
<mods:affiliation>Mineralogisch-petrographisches Institut, Albert-Ludwigs Universität, Albertstrasse 23B, W-7800, Freiburg i. Br., Federal Republic of Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmincke, Hans Ulrich" sort="Schmincke, Hans Ulrich" uniqKey="Schmincke H" first="Hans-Ulrich" last="Schmincke">Hans-Ulrich Schmincke</name>
<affiliation>
<mods:affiliation>GEOMAR, Wischhofstrasse 1-3, W-2300, Kiel 14, Federal Republic of Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Bulletin of Volcanology</title>
<title level="j" type="abbrev">Bull Volcanol</title>
<idno type="ISSN">0258-8900</idno>
<idno type="eISSN">1432-0819</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1991-11-01">1991-11-01</date>
<biblScope unit="volume">53</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="612">612</biblScope>
<biblScope unit="page" to="634">634</biblScope>
</imprint>
<idno type="ISSN">0258-8900</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0258-8900</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accretionary</term>
<term>Accretionary lapilli</term>
<term>Accretionary lapilli populations</term>
<term>April</term>
<term>Areal</term>
<term>Ashfall</term>
<term>Ashfall deposits</term>
<term>Ashfalls</term>
<term>Aspect ratios</term>
<term>Bogaard</term>
<term>Deposit</term>
<term>Different types</term>
<term>Discoidal</term>
<term>Elutriation</term>
<term>Eruption</term>
<term>Eruption clouds</term>
<term>Facies</term>
<term>Geol</term>
<term>Grain size</term>
<term>Ignimbrite</term>
<term>Ignimbrite overbank facies</term>
<term>Laacher</term>
<term>Lapillus</term>
<term>Maximum grain size</term>
<term>Middle laacher</term>
<term>Mlst</term>
<term>Overbank</term>
<term>Phreatomagmatic</term>
<term>Plinian</term>
<term>Proximal</term>
<term>Proximal deposits</term>
<term>Pumice</term>
<term>Pyroclastic</term>
<term>Pyroclastic flow</term>
<term>Pyroclastic flow deposits</term>
<term>Quaternary</term>
<term>Schmincke</term>
<term>Schumacher</term>
<term>Sieving</term>
<term>Surge deposits</term>
<term>Tephra</term>
<term>Ternary</term>
<term>Tuff</term>
<term>Upper laacher</term>
<term>Upper part</term>
<term>Upper parts</term>
<term>Vesicle</term>
<term>Vesiculated</term>
<term>Volcanol</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accretionary</term>
<term>Accretionary lapilli</term>
<term>Accretionary lapilli populations</term>
<term>April</term>
<term>Areal</term>
<term>Ashfall</term>
<term>Ashfall deposits</term>
<term>Ashfalls</term>
<term>Aspect ratios</term>
<term>Bogaard</term>
<term>Deposit</term>
<term>Different types</term>
<term>Discoidal</term>
<term>Elutriation</term>
<term>Eruption</term>
<term>Eruption clouds</term>
<term>Facies</term>
<term>Geol</term>
<term>Grain size</term>
<term>Ignimbrite</term>
<term>Ignimbrite overbank facies</term>
<term>Laacher</term>
<term>Lapillus</term>
<term>Maximum grain size</term>
<term>Middle laacher</term>
<term>Mlst</term>
<term>Overbank</term>
<term>Phreatomagmatic</term>
<term>Plinian</term>
<term>Proximal</term>
<term>Proximal deposits</term>
<term>Pumice</term>
<term>Pyroclastic</term>
<term>Pyroclastic flow</term>
<term>Pyroclastic flow deposits</term>
<term>Quaternary</term>
<term>Schmincke</term>
<term>Schumacher</term>
<term>Sieving</term>
<term>Surge deposits</term>
<term>Tephra</term>
<term>Ternary</term>
<term>Tuff</term>
<term>Upper laacher</term>
<term>Upper part</term>
<term>Upper parts</term>
<term>Vesicle</term>
<term>Vesiculated</term>
<term>Volcanol</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 μm and a maximum grain size of 250 to 350 μm. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 μm and a maximum grain size of 350 to 500 μm. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 μm and a maximum grain size up to 2 mm.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<keywords>
<teeft>
<json:string>lapillus</json:string>
<json:string>accretionary</json:string>
<json:string>accretionary lapilli</json:string>
<json:string>laacher</json:string>
<json:string>pyroclastic</json:string>
<json:string>tephra</json:string>
<json:string>surge deposits</json:string>
<json:string>ashfall</json:string>
<json:string>pyroclastic flow deposits</json:string>
<json:string>schmincke</json:string>
<json:string>facies</json:string>
<json:string>phreatomagmatic</json:string>
<json:string>overbank</json:string>
<json:string>sieving</json:string>
<json:string>pyroclastic flow</json:string>
<json:string>tuff</json:string>
<json:string>schumacher</json:string>
<json:string>pumice</json:string>
<json:string>vesicle</json:string>
<json:string>vesiculated</json:string>
<json:string>different types</json:string>
<json:string>elutriation</json:string>
<json:string>deposit</json:string>
<json:string>ignimbrite</json:string>
<json:string>ashfalls</json:string>
<json:string>geol</json:string>
<json:string>eruption</json:string>
<json:string>upper laacher</json:string>
<json:string>maximum grain size</json:string>
<json:string>quaternary</json:string>
<json:string>discoidal</json:string>
<json:string>grain size</json:string>
<json:string>upper parts</json:string>
<json:string>volcanol</json:string>
<json:string>ternary</json:string>
<json:string>proximal deposits</json:string>
<json:string>middle laacher</json:string>
<json:string>bogaard</json:string>
<json:string>april</json:string>
<json:string>aspect ratios</json:string>
<json:string>eruption clouds</json:string>
<json:string>areal</json:string>
<json:string>ashfall deposits</json:string>
<json:string>accretionary lapilli populations</json:string>
<json:string>mlst</json:string>
<json:string>plinian</json:string>
<json:string>ignimbrite overbank facies</json:string>
<json:string>upper part</json:string>
<json:string>proximal</json:string>
<json:string>volcano</json:string>
<json:string>areal distribution</json:string>
<json:string>vesiculated tuff layers</json:string>
<json:string>sigurdsson</json:string>
<json:string>other volcanoes</json:string>
<json:string>finegrained</json:string>
<json:string>pyroclastic flow deposit</json:string>
<json:string>enclose</json:string>
<json:string>surge</json:string>
<json:string>pyroclastic flows</json:string>
<json:string>accretionary deposits</json:string>
<json:string>particle texture</json:string>
<json:string>field relationships</json:string>
<json:string>flow deposits</json:string>
<json:string>coarse particles</json:string>
<json:string>average density</json:string>
<json:string>binding forces</json:string>
<json:string>accretionary lapilli population</json:string>
<json:string>flow deposit</json:string>
<json:string>overbank facies</json:string>
<json:string>distal deposits</json:string>
<json:string>largest diameter</json:string>
<json:string>large grains</json:string>
<json:string>matrix</json:string>
<json:string>vesicular</json:string>
<json:string>median</json:string>
<json:string>aggregate</json:string>
<json:string>fluid bridges</json:string>
<json:string>internal structure</json:string>
<json:string>tephra layers</json:string>
<json:string>internal characteristics</json:string>
<json:string>cumulative distribution curves show</json:string>
<json:string>internal structures</json:string>
<json:string>horizontal transport</json:string>
<json:string>discrete layers</json:string>
<json:string>vesiculated tuff</json:string>
<json:string>greater distances</json:string>
<json:string>april eruption</json:string>
<json:string>particle textures</json:string>
<json:string>tephra deposits</json:string>
<json:string>volcanol geotherm</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Rolf Schumacher</name>
<affiliations>
<json:string>Mineralogisch-petrographisches Institut, Albert-Ludwigs Universität, Albertstrasse 23B, W-7800, Freiburg i. Br., Federal Republic of Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hans-Ulrich Schmincke</name>
<affiliations>
<json:string>GEOMAR, Wischhofstrasse 1-3, W-2300, Kiel 14, Federal Republic of Germany</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF00493689</json:string>
<json:string>Art3</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 μm and a maximum grain size of 250 to 350 μm. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 μm and a maximum grain size of 350 to 500 μm. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 μm and a maximum grain size up to 2 mm.</abstract>
<qualityIndicators>
<score>8</score>
<pdfWordCount>12085</pdfWordCount>
<pdfCharCount>76586</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>23</pdfPageCount>
<pdfPageSize>597.28 x 785 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>325</abstractWordCount>
<abstractCharCount>2130</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Bulletin of Volcanology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<issn>
<json:string>0258-8900</json:string>
</issn>
<eissn>
<json:string>1432-0819</json:string>
</eissn>
<journalId>
<json:string>445</json:string>
</journalId>
<volume>53</volume>
<issue>8</issue>
<pages>
<first>612</first>
<last>634</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Geology</value>
</json:item>
<json:item>
<value>Geophysics/Geodesy</value>
</json:item>
<json:item>
<value>Mineralogy</value>
</json:item>
<json:item>
<value>Sedimentology</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<doi>
<json:string>10.1007/BF00493689</json:string>
</doi>
<id>06F10A19476E0C694DE9296D6C7D1DA17079086D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/06F10A19476E0C694DE9296D6C7D1DA17079086D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/06F10A19476E0C694DE9296D6C7D1DA17079086D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/06F10A19476E0C694DE9296D6C7D1DA17079086D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<availability>
<licence>
<p>Springer-Verlag, 1991</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>1991</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">Rolf</forename>
<surname>Schumacher</surname>
</persName>
<affiliation>Mineralogisch-petrographisches Institut, Albert-Ludwigs Universität, Albertstrasse 23B, W-7800, Freiburg i. Br., Federal Republic of Germany</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Hans-Ulrich</forename>
<surname>Schmincke</surname>
</persName>
<affiliation>GEOMAR, Wischhofstrasse 1-3, W-2300, Kiel 14, Federal Republic of Germany</affiliation>
</author>
<idno type="istex">06F10A19476E0C694DE9296D6C7D1DA17079086D</idno>
<idno type="ark">ark:/67375/1BB-69SR62K7-H</idno>
<idno type="DOI">10.1007/BF00493689</idno>
<idno type="article-id">BF00493689</idno>
<idno type="article-id">Art3</idno>
</analytic>
<monogr>
<title level="j">Bulletin of Volcanology</title>
<title level="j" type="abbrev">Bull Volcanol</title>
<idno type="pISSN">0258-8900</idno>
<idno type="eISSN">1432-0819</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">7</idno>
<idno type="volume-issue-count">8</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1991-11-01"></date>
<biblScope unit="volume">53</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="612">612</biblScope>
<biblScope unit="page" to="634">634</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1991</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 μm and a maximum grain size of 250 to 350 μm. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 μm and a maximum grain size of 350 to 500 μm. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 μm and a maximum grain size up to 2 mm.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Geosciences</head>
<item>
<term>Geology</term>
</item>
<item>
<term>Geophysics/Geodesy</term>
</item>
<item>
<term>Mineralogy</term>
</item>
<item>
<term>Sedimentology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1991-11-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-10-4">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/06F10A19476E0C694DE9296D6C7D1DA17079086D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer-Verlag</PublisherName>
<PublisherLocation>Berlin/Heidelberg</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>445</JournalID>
<JournalPrintISSN>0258-8900</JournalPrintISSN>
<JournalElectronicISSN>1432-0819</JournalElectronicISSN>
<JournalTitle>Bulletin of Volcanology</JournalTitle>
<JournalAbbreviatedTitle>Bull Volcanol</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Geosciences</JournalSubject>
<JournalSubject Type="Secondary">Geology</JournalSubject>
<JournalSubject Type="Secondary">Geophysics/Geodesy</JournalSubject>
<JournalSubject Type="Secondary">Mineralogy</JournalSubject>
<JournalSubject Type="Secondary">Sedimentology</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>53</VolumeIDStart>
<VolumeIDEnd>53</VolumeIDEnd>
<VolumeIssueCount>8</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>8</IssueIDStart>
<IssueIDEnd>8</IssueIDEnd>
<IssueArticleCount>7</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>1991</Year>
<Month>11</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1991</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art3">
<ArticleInfo Language="En" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF00493689</ArticleID>
<ArticleDOI>10.1007/BF00493689</ArticleDOI>
<ArticleSequenceNumber>3</ArticleSequenceNumber>
<ArticleTitle Language="En">Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</ArticleTitle>
<ArticleFirstPage>612</ArticleFirstPage>
<ArticleLastPage>634</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2004</Year>
<Month>10</Month>
<Day>4</Day>
</RegistrationDate>
</ArticleHistory>
<ArticleEditorialResponsibility>Editorial responsibility: H. Sigurdsson</ArticleEditorialResponsibility>
<ArticleCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1991</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>445</JournalID>
<VolumeIDStart>53</VolumeIDStart>
<VolumeIDEnd>53</VolumeIDEnd>
<IssueIDStart>8</IssueIDStart>
<IssueIDEnd>8</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1" CorrespondingAffiliationID="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Rolf</GivenName>
<FamilyName>Schumacher</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Hans-Ulrich</GivenName>
<FamilyName>Schmincke</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Mineralogisch-petrographisches Institut</OrgDivision>
<OrgName>Albert-Ludwigs Universität</OrgName>
<OrgAddress>
<Street>Albertstrasse 23B</Street>
<Postcode>W-7800</Postcode>
<City>Freiburg i. Br.</City>
<Country>Federal Republic of Germany</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgName>GEOMAR</OrgName>
<OrgAddress>
<Street>Wischhofstrasse 1-3</Street>
<Postcode>W-2300</Postcode>
<City>Kiel 14</City>
<Country>Federal Republic of Germany</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m
<Superscript>3</Superscript>
. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m
<Superscript>3</Superscript>
. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 μm and a maximum grain size of 250 to 350 μm. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 μm and a maximum grain size of 350 to 500 μm. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 μm and a maximum grain size up to 2 mm.</Para>
</Abstract>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">Rolf</namePart>
<namePart type="family">Schumacher</namePart>
<affiliation>Mineralogisch-petrographisches Institut, Albert-Ludwigs Universität, Albertstrasse 23B, W-7800, Freiburg i. Br., Federal Republic of Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hans-Ulrich</namePart>
<namePart type="family">Schmincke</namePart>
<affiliation>GEOMAR, Wischhofstrasse 1-3, W-2300, Kiel 14, Federal Republic of Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Springer-Verlag</publisher>
<place>
<placeTerm type="text">Berlin/Heidelberg</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1991-11-01</dateIssued>
<dateIssued encoding="w3cdtf">1991</dateIssued>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 μm and a maximum grain size of 250 to 350 μm. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 μm and a maximum grain size of 350 to 500 μm. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 μm and a maximum grain size up to 2 mm.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Bulletin of Volcanology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Bull Volcanol</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal" authority="ISTEX" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">1991-11-01</dateIssued>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<subject>
<genre>Geosciences</genre>
<topic>Geology</topic>
<topic>Geophysics/Geodesy</topic>
<topic>Mineralogy</topic>
<topic>Sedimentology</topic>
</subject>
<identifier type="ISSN">0258-8900</identifier>
<identifier type="eISSN">1432-0819</identifier>
<identifier type="JournalID">445</identifier>
<identifier type="IssueArticleCount">7</identifier>
<identifier type="VolumeIssueCount">8</identifier>
<part>
<date>1991</date>
<detail type="volume">
<number>53</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>8</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>612</start>
<end>634</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag, 1991</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">06F10A19476E0C694DE9296D6C7D1DA17079086D</identifier>
<identifier type="ark">ark:/67375/1BB-69SR62K7-H</identifier>
<identifier type="DOI">10.1007/BF00493689</identifier>
<identifier type="ArticleID">BF00493689</identifier>
<identifier type="ArticleID">Art3</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag, 1991</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Springer-Verlag, 1991</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/06F10A19476E0C694DE9296D6C7D1DA17079086D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:06F10A19476E0C694DE9296D6C7D1DA17079086D
   |texte=   Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021