Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt Atherina boyeri complex in Greece

Identifieur interne : 000504 ( Istex/Corpus ); précédent : 000503; suivant : 000505

Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt Atherina boyeri complex in Greece

Auteurs : S. Kraitsek ; E. Klossa-Kilia ; G. Kilias

Source :

RBID : ISTEX:689E2E59FEC96D142FC176233C98A79CCE3D06BA

English descriptors

Abstract

Genetic differentiation and phylogenetic relationships of big‐scale sand smelt Atherina boyeri specimens from 23 sampling sites in Greece and one from a lake in Turkey were investigated. A total of 2180 base pairs (bp) corresponding to the partial sequence of the mitochondrial gene cytochrome oxidase I (coI), cytochrome b (cytb) and control region, as well as of the nuclear protein‐coding gene rhodopsin (rh), were determined for the 143 specimens studied. Phylogenetic analysis of each gene segment separately and of the combined dataset revealed the existence of three different and well divergent lineages in Greece. The first corresponds to the lagoon form, in which a clear distinction between the Aegean and Ionian Sea was observed. The other two correspond to the punctuated and non‐punctuated marine forms that have been previously reported. The fact that in the present study a population without black spots on the flanks is clustered with the punctuated form and vice versa, however, suggests that differences in colour pattern do not seem to be a sufficient marker to discriminate the two marine forms. In contrast, the presence of a different length insertion between transfer RNA (tRNA) glutamic acid (tRNAglu) and cytb genes in the lagoon and in one of the two forms of marine populations, and its absence from the rest marine‐form specimens confirms that this character is conserved and capable to be used for distinguishing the different forms. Even though the divergence values among the different forms were high, their phylogenetic relationships were not able to be resolved.

Url:
DOI: 10.1111/j.1095-8649.2012.03404.x

Links to Exploration step

ISTEX:689E2E59FEC96D142FC176233C98A79CCE3D06BA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt Atherina boyeri complex in Greece</title>
<author>
<name sortKey="Kraitsek, S" sort="Kraitsek, S" uniqKey="Kraitsek S" first="S." last="Kraitsek">S. Kraitsek</name>
<affiliation>
<mods:affiliation>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klossa Ilia, E" sort="Klossa Ilia, E" uniqKey="Klossa Ilia E" first="E." last="Klossa-Kilia">E. Klossa-Kilia</name>
<affiliation>
<mods:affiliation>Department of Biology, Division of Animal Zoology, University of Patras, Patras 26500, Greece</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kilias, G" sort="Kilias, G" uniqKey="Kilias G" first="G." last="Kilias">G. Kilias</name>
<affiliation>
<mods:affiliation>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kilias@upatras.gr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:689E2E59FEC96D142FC176233C98A79CCE3D06BA</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1095-8649.2012.03404.x</idno>
<idno type="url">https://api.istex.fr/document/689E2E59FEC96D142FC176233C98A79CCE3D06BA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000504</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000504</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt
<hi rend="italic">Atherina boyeri</hi>
complex in Greece</title>
<author>
<name sortKey="Kraitsek, S" sort="Kraitsek, S" uniqKey="Kraitsek S" first="S." last="Kraitsek">S. Kraitsek</name>
<affiliation>
<mods:affiliation>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klossa Ilia, E" sort="Klossa Ilia, E" uniqKey="Klossa Ilia E" first="E." last="Klossa-Kilia">E. Klossa-Kilia</name>
<affiliation>
<mods:affiliation>Department of Biology, Division of Animal Zoology, University of Patras, Patras 26500, Greece</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kilias, G" sort="Kilias, G" uniqKey="Kilias G" first="G." last="Kilias">G. Kilias</name>
<affiliation>
<mods:affiliation>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kilias@upatras.gr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Fish Biology</title>
<title level="j" type="alt">JOURNAL OF FISH BIOLOGY</title>
<idno type="ISSN">0022-1112</idno>
<idno type="eISSN">1095-8649</idno>
<imprint>
<biblScope unit="vol">81</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1559">1559</biblScope>
<biblScope unit="page" to="1577">1577</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-10">2012-10</date>
</imprint>
<idno type="ISSN">0022-1112</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1112</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accession</term>
<term>Accession numbers</term>
<term>Amvrakikos</term>
<term>Anks</term>
<term>Atherina</term>
<term>Atherina boyeri</term>
<term>Atherina boyeri populations</term>
<term>Atherina boyeri risso</term>
<term>Atherinidae</term>
<term>Authors journal</term>
<term>Bayesian</term>
<term>Bayesian inference</term>
<term>Biology</term>
<term>Black spots</term>
<term>Boyeri</term>
<term>Boyeri forms</term>
<term>Boyeri populations</term>
<term>Boyeri specimens</term>
<term>British isles</term>
<term>Clade</term>
<term>Coding region</term>
<term>Concatenated dataset</term>
<term>Congiu</term>
<term>Control region</term>
<term>Cytb</term>
<term>Cytochrome</term>
<term>Cytochrome oxidase</term>
<term>Danio</term>
<term>Dataset</term>
<term>Different forms</term>
<term>Different species</term>
<term>Divergence</term>
<term>Eastern mediterranean</term>
<term>Evvoia</term>
<term>Fish biology</term>
<term>Fisheries society</term>
<term>Fishery</term>
<term>Genbank</term>
<term>Genbank accession numbers</term>
<term>Genetic divergence</term>
<term>Genus atherina</term>
<term>Haplotype</term>
<term>Insertion</term>
<term>Intergenic</term>
<term>Intergenic spacer</term>
<term>Ionian</term>
<term>Kimura model</term>
<term>Kraitsek</term>
<term>Lagoon form</term>
<term>Lagoon populations</term>
<term>Lagoon specimens</term>
<term>Lake iznik</term>
<term>Marine form</term>
<term>Marine forms</term>
<term>Marine lagoon</term>
<term>Marine populations</term>
<term>Maximum parsimony</term>
<term>Menidia</term>
<term>Menidia menidia danio rerio</term>
<term>Milana</term>
<term>Mitochondrial</term>
<term>Molecular biology</term>
<term>Molecular evolution</term>
<term>Molecular phylogenetics</term>
<term>Moudania</term>
<term>Mtdna</term>
<term>Mtdna genes</term>
<term>Mtdna segments</term>
<term>Nuclear gene</term>
<term>Phylogenetic</term>
<term>Phylogenetic analysis</term>
<term>Phylogenetic relationships</term>
<term>Present study</term>
<term>Preveza</term>
<term>Previous studies</term>
<term>Rflp</term>
<term>Rflp analysis</term>
<term>Rhodopsin</term>
<term>Sampling sites</term>
<term>Second marine form</term>
<term>Sequence analysis</term>
<term>Support values</term>
<term>Trabelsi</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accession</term>
<term>Accession numbers</term>
<term>Amvrakikos</term>
<term>Anks</term>
<term>Atherina</term>
<term>Atherina boyeri</term>
<term>Atherina boyeri populations</term>
<term>Atherina boyeri risso</term>
<term>Atherinidae</term>
<term>Authors journal</term>
<term>Bayesian</term>
<term>Bayesian inference</term>
<term>Biology</term>
<term>Black spots</term>
<term>Boyeri</term>
<term>Boyeri forms</term>
<term>Boyeri populations</term>
<term>Boyeri specimens</term>
<term>British isles</term>
<term>Clade</term>
<term>Coding region</term>
<term>Concatenated dataset</term>
<term>Congiu</term>
<term>Control region</term>
<term>Cytb</term>
<term>Cytochrome</term>
<term>Cytochrome oxidase</term>
<term>Danio</term>
<term>Dataset</term>
<term>Different forms</term>
<term>Different species</term>
<term>Divergence</term>
<term>Eastern mediterranean</term>
<term>Evvoia</term>
<term>Fish biology</term>
<term>Fisheries society</term>
<term>Fishery</term>
<term>Genbank</term>
<term>Genbank accession numbers</term>
<term>Genetic divergence</term>
<term>Genus atherina</term>
<term>Haplotype</term>
<term>Insertion</term>
<term>Intergenic</term>
<term>Intergenic spacer</term>
<term>Ionian</term>
<term>Kimura model</term>
<term>Kraitsek</term>
<term>Lagoon form</term>
<term>Lagoon populations</term>
<term>Lagoon specimens</term>
<term>Lake iznik</term>
<term>Marine form</term>
<term>Marine forms</term>
<term>Marine lagoon</term>
<term>Marine populations</term>
<term>Maximum parsimony</term>
<term>Menidia</term>
<term>Menidia menidia danio rerio</term>
<term>Milana</term>
<term>Mitochondrial</term>
<term>Molecular biology</term>
<term>Molecular evolution</term>
<term>Molecular phylogenetics</term>
<term>Moudania</term>
<term>Mtdna</term>
<term>Mtdna genes</term>
<term>Mtdna segments</term>
<term>Nuclear gene</term>
<term>Phylogenetic</term>
<term>Phylogenetic analysis</term>
<term>Phylogenetic relationships</term>
<term>Present study</term>
<term>Preveza</term>
<term>Previous studies</term>
<term>Rflp</term>
<term>Rflp analysis</term>
<term>Rhodopsin</term>
<term>Sampling sites</term>
<term>Second marine form</term>
<term>Sequence analysis</term>
<term>Support values</term>
<term>Trabelsi</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genetic differentiation and phylogenetic relationships of big‐scale sand smelt Atherina boyeri specimens from 23 sampling sites in Greece and one from a lake in Turkey were investigated. A total of 2180 base pairs (bp) corresponding to the partial sequence of the mitochondrial gene cytochrome oxidase I (coI), cytochrome b (cytb) and control region, as well as of the nuclear protein‐coding gene rhodopsin (rh), were determined for the 143 specimens studied. Phylogenetic analysis of each gene segment separately and of the combined dataset revealed the existence of three different and well divergent lineages in Greece. The first corresponds to the lagoon form, in which a clear distinction between the Aegean and Ionian Sea was observed. The other two correspond to the punctuated and non‐punctuated marine forms that have been previously reported. The fact that in the present study a population without black spots on the flanks is clustered with the punctuated form and vice versa, however, suggests that differences in colour pattern do not seem to be a sufficient marker to discriminate the two marine forms. In contrast, the presence of a different length insertion between transfer RNA (tRNA) glutamic acid (tRNAglu) and cytb genes in the lagoon and in one of the two forms of marine populations, and its absence from the rest marine‐form specimens confirms that this character is conserved and capable to be used for distinguishing the different forms. Even though the divergence values among the different forms were high, their phylogenetic relationships were not able to be resolved.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>boyeri</json:string>
<json:string>fish biology</json:string>
<json:string>atherina</json:string>
<json:string>phylogenetic</json:string>
<json:string>cytb</json:string>
<json:string>amvrakikos</json:string>
<json:string>kraitsek</json:string>
<json:string>ionian</json:string>
<json:string>fisheries society</json:string>
<json:string>authors journal</json:string>
<json:string>british isles</json:string>
<json:string>mitochondrial</json:string>
<json:string>marine form</json:string>
<json:string>milana</json:string>
<json:string>present study</json:string>
<json:string>dataset</json:string>
<json:string>black spots</json:string>
<json:string>atherina boyeri</json:string>
<json:string>evvoia</json:string>
<json:string>preveza</json:string>
<json:string>control region</json:string>
<json:string>menidia</json:string>
<json:string>insertion</json:string>
<json:string>mtdna</json:string>
<json:string>intergenic</json:string>
<json:string>second marine form</json:string>
<json:string>anks</json:string>
<json:string>cytochrome</json:string>
<json:string>clade</json:string>
<json:string>phylogenetic relationships</json:string>
<json:string>trabelsi</json:string>
<json:string>haplotype</json:string>
<json:string>fishery</json:string>
<json:string>phylogenetic analysis</json:string>
<json:string>sampling sites</json:string>
<json:string>eastern mediterranean</json:string>
<json:string>boyeri populations</json:string>
<json:string>rflp</json:string>
<json:string>lagoon form</json:string>
<json:string>atherinidae</json:string>
<json:string>marine forms</json:string>
<json:string>intergenic spacer</json:string>
<json:string>accession</json:string>
<json:string>moudania</json:string>
<json:string>bayesian</json:string>
<json:string>danio</json:string>
<json:string>rhodopsin</json:string>
<json:string>congiu</json:string>
<json:string>genbank</json:string>
<json:string>rflp analysis</json:string>
<json:string>marine populations</json:string>
<json:string>marine lagoon</json:string>
<json:string>bayesian inference</json:string>
<json:string>genbank accession numbers</json:string>
<json:string>menidia menidia danio rerio</json:string>
<json:string>molecular phylogenetics</json:string>
<json:string>genus atherina</json:string>
<json:string>atherina boyeri risso</json:string>
<json:string>coding region</json:string>
<json:string>genetic divergence</json:string>
<json:string>lagoon specimens</json:string>
<json:string>sequence analysis</json:string>
<json:string>lagoon populations</json:string>
<json:string>biology</json:string>
<json:string>divergence</json:string>
<json:string>previous studies</json:string>
<json:string>maximum parsimony</json:string>
<json:string>kimura model</json:string>
<json:string>accession numbers</json:string>
<json:string>cytochrome oxidase</json:string>
<json:string>support values</json:string>
<json:string>nuclear gene</json:string>
<json:string>lake iznik</json:string>
<json:string>mtdna segments</json:string>
<json:string>boyeri forms</json:string>
<json:string>boyeri specimens</json:string>
<json:string>mtdna genes</json:string>
<json:string>concatenated dataset</json:string>
<json:string>different species</json:string>
<json:string>atherina boyeri populations</json:string>
<json:string>molecular evolution</json:string>
<json:string>different forms</json:string>
<json:string>molecular biology</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>S. Kraitsek</name>
<affiliations>
<json:string>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. Klossa‐Kilia</name>
<affiliations>
<json:string>Department of Biology, Division of Animal Zoology, University of Patras, Patras 26500, Greece</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Kilias</name>
<affiliations>
<json:string>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</json:string>
<json:string>E-mail: kilias@upatras.gr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mtDNA</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>populations</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rhodopsin</value>
</json:item>
</subject>
<articleId>
<json:string>JFB3404</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Genetic differentiation and phylogenetic relationships of big‐scale sand smelt Atherina boyeri specimens from 23 sampling sites in Greece and one from a lake in Turkey were investigated. A total of 2180 base pairs (bp) corresponding to the partial sequence of the mitochondrial gene cytochrome oxidase I (coI), cytochrome b (cytb) and control region, as well as of the nuclear protein‐coding gene rhodopsin (rh), were determined for the 143 specimens studied. Phylogenetic analysis of each gene segment separately and of the combined dataset revealed the existence of three different and well divergent lineages in Greece. The first corresponds to the lagoon form, in which a clear distinction between the Aegean and Ionian Sea was observed. The other two correspond to the punctuated and non‐punctuated marine forms that have been previously reported. The fact that in the present study a population without black spots on the flanks is clustered with the punctuated form and vice versa, however, suggests that differences in colour pattern do not seem to be a sufficient marker to discriminate the two marine forms. In contrast, the presence of a different length insertion between transfer RNA (tRNA) glutamic acid (tRNAglu) and cytb genes in the lagoon and in one of the two forms of marine populations, and its absence from the rest marine‐form specimens confirms that this character is conserved and capable to be used for distinguishing the different forms. Even though the divergence values among the different forms were high, their phylogenetic relationships were not able to be resolved.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>487.559 x 702.992 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractCharCount>1598</abstractCharCount>
<pdfWordCount>7347</pdfWordCount>
<pdfCharCount>50224</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>251</abstractWordCount>
</qualityIndicators>
<title>Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt Atherina boyeri complex in Greece</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Fish Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1095-8649</json:string>
</doi>
<issn>
<json:string>0022-1112</json:string>
</issn>
<eissn>
<json:string>1095-8649</json:string>
</eissn>
<publisherId>
<json:string>JFB</json:string>
</publisherId>
<volume>81</volume>
<issue>5</issue>
<pages>
<first>1559</first>
<last>1577</last>
<total>19</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>marine & freshwater biology</json:string>
<json:string>fisheries</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>fisheries</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>invertebres</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1095-8649.2012.03404.x</json:string>
</doi>
<id>689E2E59FEC96D142FC176233C98A79CCE3D06BA</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/689E2E59FEC96D142FC176233C98A79CCE3D06BA/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/689E2E59FEC96D142FC176233C98A79CCE3D06BA/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/689E2E59FEC96D142FC176233C98A79CCE3D06BA/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt
<hi rend="italic">Atherina boyeri</hi>
complex in Greece</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles</licence>
</availability>
<date type="published" when="2012-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt
<hi rend="italic">Atherina boyeri</hi>
complex in Greece</title>
<author xml:id="author-0000">
<persName>
<forename type="first">S.</forename>
<surname>Kraitsek</surname>
</persName>
<affiliation>
<address>
<country key="GR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">E.</forename>
<surname>Klossa‐Kilia</surname>
</persName>
<affiliation>
<address>
<country key="GR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<forename type="first">G.</forename>
<surname>Kilias</surname>
</persName>
<affiliation>
<address>
<country key="GR"></country>
</address>
</affiliation>
<affiliation>Tel.: +30 2610969236; email: kilias@upatras.gr</affiliation>
</author>
<idno type="istex">689E2E59FEC96D142FC176233C98A79CCE3D06BA</idno>
<idno type="DOI">10.1111/j.1095-8649.2012.03404.x</idno>
<idno type="unit">JFB3404</idno>
<idno type="toTypesetVersion">file:JFB.JFB3404.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Fish Biology</title>
<title level="j" type="alt">JOURNAL OF FISH BIOLOGY</title>
<idno type="pISSN">0022-1112</idno>
<idno type="eISSN">1095-8649</idno>
<idno type="book-DOI">10.1111/(ISSN)1095-8649</idno>
<idno type="book-part-DOI">10.1111/jfb.2012.81.issue-5</idno>
<idno type="product">JFB</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">81</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1559">1559</biblScope>
<biblScope unit="page" to="1577">1577</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>Genetic differentiation and phylogenetic relationships of big‐scale sand smelt
<hi rend="italic">Atherina boyeri</hi>
specimens from 23 sampling sites in Greece and one from a lake in Turkey were investigated. A total of 2180 base pairs (bp) corresponding to the partial sequence of the mitochondrial gene cytochrome oxidase I (
<hi rend="italic">coI</hi>
), cytochrome
<hi rend="italic">b</hi>
(
<hi rend="italic">cytb</hi>
) and control region, as well as of the nuclear protein‐coding gene rhodopsin (
<hi rend="italic">rh</hi>
), were determined for the 143 specimens studied. Phylogenetic analysis of each gene segment separately and of the combined dataset revealed the existence of three different and well divergent lineages in Greece. The first corresponds to the lagoon form, in which a clear distinction between the Aegean and Ionian Sea was observed. The other two correspond to the punctuated and non‐punctuated marine forms that have been previously reported. The fact that in the present study a population without black spots on the flanks is clustered with the punctuated form and
<hi rend="italic">vice versa,</hi>
however, suggests that differences in colour pattern do not seem to be a sufficient marker to discriminate the two marine forms. In contrast, the presence of a different length insertion between transfer RNA (tRNA) glutamic acid (tRNA
<hi rend="superscript">glu</hi>
) and
<hi rend="italic">cytb</hi>
genes in the lagoon and in one of the two forms of marine populations, and its absence from the rest marine‐form specimens confirms that this character is conserved and capable to be used for distinguishing the different forms. Even though the divergence values among the different forms were high, their phylogenetic relationships were not able to be resolved.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">mtDNA</term>
<term xml:id="k2">populations</term>
<term xml:id="k3">rhodopsin</term>
</keywords>
<classCode scheme="tocHeading1">REGULAR PAPERS</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/689E2E59FEC96D142FC176233C98A79CCE3D06BA/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1095-8649</doi>
<issn type="print">0022-1112</issn>
<issn type="electronic">1095-8649</issn>
<idGroup>
<id type="product" value="JFB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF FISH BIOLOGY">Journal of Fish Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10105">
<doi origin="wiley">10.1111/jfb.2012.81.issue-5</doi>
<numberingGroup>
<numbering type="journalVolume" number="81">81</numbering>
<numbering type="journalIssue" number="5">5</numbering>
</numberingGroup>
<coverDate startDate="2012-10">October 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="7" status="forIssue">
<doi origin="wiley">10.1111/j.1095-8649.2012.03404.x</doi>
<idGroup>
<id type="unit" value="JFB3404"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">REGULAR PAPERS</title>
</titleGroup>
<copyright>© 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.1.7 mode:FullText" date="2012-10-01"></event>
<event type="firstOnline" date="2012-10-01"></event>
<event type="publishedOnlineFinalForm" date="2012-10-01"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1559">1559</numbering>
<numbering type="pageLast" number="1577">1577</numbering>
</numberingGroup>
<correspondenceTo> Tel.: +30 2610969236; email:
<email>kilias@upatras.gr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JFB.JFB3404.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>(Received 11 April 2011, Accepted 19 June 2012)</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="37"></count>
</countGroup>
<titleGroup>
<title type="main">Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt
<i>Atherina boyeri</i>
complex in Greece</title>
<title type="shortAuthors">S. KRAITSEK
<i>ET AL.</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>S.</givenNames>
<familyName>Kraitsek</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>E.</givenNames>
<familyName>Klossa‐Kilia</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>G.</givenNames>
<familyName>Kilias</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="GR">
<unparsedAffiliation>
<i>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</i>
</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="GR">
<unparsedAffiliation>
<i>Department of Biology, Division of Animal Zoology, University of Patras, Patras 26500, Greece</i>
</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">mtDNA</keyword>
<keyword xml:id="k2">populations</keyword>
<keyword xml:id="k3">rhodopsin</keyword>
</keywordGroup>
<supportingInformation>
<p>
<b>Supporting Information</b>
</p>
<p>Supporting Information may be found in the online version of this paper:</p>
<p>
<b>Table SI.</b>
<i>coI</i>
haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of
<i>Atherina boyeri</i>
to which they belong. The forms of
<i>A. boyeri</i>
are named according to the text.</p>
<p>
<b>Table SII.</b>
Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of
<i>Atherina boyeri</i>
to which they belong. The forms of
<i>A. boyeri</i>
are named according to the text.</p>
<p>
<b>Table SIII.</b>
<i>cytb</i>
haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of
<i>Atherina boyeri</i>
to which they belong. The forms of
<i>A. boyeri</i>
are named according to the text.</p>
<p>
<b>Table SIV.</b>
<i>rh</i>
haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of
<i>Atherina boyeri</i>
to which they belong. The forms of
<i>A. boyeri</i>
are named according to the text.</p>
<p>
<b>Table SV.</b>
List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of
<i>Atherina boyeri</i>
are named according to the text.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:00221112:media:jfb3404:JFB_3404_sm_tables1-s4"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:00221112:media:jfb3404:JFB_3404_sm_tables5"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>Genetic differentiation and phylogenetic relationships of big‐scale sand smelt
<i>Atherina boyeri</i>
specimens from 23 sampling sites in Greece and one from a lake in Turkey were investigated. A total of 2180 base pairs (bp) corresponding to the partial sequence of the mitochondrial gene cytochrome oxidase I (
<i>coI</i>
), cytochrome
<i>b</i>
(
<i>cytb</i>
) and control region, as well as of the nuclear protein‐coding gene rhodopsin (
<i>rh</i>
), were determined for the 143 specimens studied. Phylogenetic analysis of each gene segment separately and of the combined dataset revealed the existence of three different and well divergent lineages in Greece. The first corresponds to the lagoon form, in which a clear distinction between the Aegean and Ionian Sea was observed. The other two correspond to the punctuated and non‐punctuated marine forms that have been previously reported. The fact that in the present study a population without black spots on the flanks is clustered with the punctuated form and
<i>vice versa,</i>
however, suggests that differences in colour pattern do not seem to be a sufficient marker to discriminate the two marine forms. In contrast, the presence of a different length insertion between transfer RNA (tRNA) glutamic acid (tRNA
<sup>glu</sup>
) and
<i>cytb</i>
genes in the lagoon and in one of the two forms of marine populations, and its absence from the rest marine‐form specimens confirms that this character is conserved and capable to be used for distinguishing the different forms. Even though the divergence values among the different forms were high, their phylogenetic relationships were not able to be resolved.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt Atherina boyeri complex in Greece</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt Atherina boyeri complex in Greece</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Kraitsek</namePart>
<affiliation>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">Klossa‐Kilia</namePart>
<affiliation>Department of Biology, Division of Animal Zoology, University of Patras, Patras 26500, Greece</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Kilias</namePart>
<affiliation>Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, Patras 26500, Greece</affiliation>
<affiliation>E-mail: kilias@upatras.gr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-10</dateIssued>
<edition>(Received 11 April 2011, Accepted 19 June 2012)</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">3</extent>
<extent unit="tables">3</extent>
<extent unit="references">37</extent>
</physicalDescription>
<abstract lang="en">Genetic differentiation and phylogenetic relationships of big‐scale sand smelt Atherina boyeri specimens from 23 sampling sites in Greece and one from a lake in Turkey were investigated. A total of 2180 base pairs (bp) corresponding to the partial sequence of the mitochondrial gene cytochrome oxidase I (coI), cytochrome b (cytb) and control region, as well as of the nuclear protein‐coding gene rhodopsin (rh), were determined for the 143 specimens studied. Phylogenetic analysis of each gene segment separately and of the combined dataset revealed the existence of three different and well divergent lineages in Greece. The first corresponds to the lagoon form, in which a clear distinction between the Aegean and Ionian Sea was observed. The other two correspond to the punctuated and non‐punctuated marine forms that have been previously reported. The fact that in the present study a population without black spots on the flanks is clustered with the punctuated form and vice versa, however, suggests that differences in colour pattern do not seem to be a sufficient marker to discriminate the two marine forms. In contrast, the presence of a different length insertion between transfer RNA (tRNA) glutamic acid (tRNAglu) and cytb genes in the lagoon and in one of the two forms of marine populations, and its absence from the rest marine‐form specimens confirms that this character is conserved and capable to be used for distinguishing the different forms. Even though the divergence values among the different forms were high, their phylogenetic relationships were not able to be resolved.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>mtDNA</topic>
<topic>populations</topic>
<topic>rhodopsin</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Fish Biology</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Supporting Information Supporting Information may be found in the online version of this paper: Table SI. coI haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SII. Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIII. cytb haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIV. rh haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SV. List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of Atherina boyeri are named according to the text. Supporting Information Supporting Information may be found in the online version of this paper: Table SI. coI haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SII. Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIII. cytb haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIV. rh haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SV. List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of Atherina boyeri are named according to the text. Supporting Information Supporting Information may be found in the online version of this paper: Table SI. coI haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SII. Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIII. cytb haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIV. rh haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SV. List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of Atherina boyeri are named according to the text. Supporting Information Supporting Information may be found in the online version of this paper: Table SI. coI haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SII. Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIII. cytb haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIV. rh haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SV. List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of Atherina boyeri are named according to the text. Supporting Information Supporting Information may be found in the online version of this paper: Table SI. coI haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SII. Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIII. cytb haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIV. rh haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SV. List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of Atherina boyeri are named according to the text. Supporting Information Supporting Information may be found in the online version of this paper: Table SI. coI haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SII. Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIII. cytb haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIV. rh haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SV. List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of Atherina boyeri are named according to the text. Supporting Information Supporting Information may be found in the online version of this paper: Table SI. coI haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SII. Control region haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIII. cytb haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SIV. rh haplotypes, frequency, specimens corresponding to each haplotype, GenBank accession numbers and the form of Atherina boyeri to which they belong. The forms of A. boyeri are named according to the text. Table SV. List with the unique insertion sequences and the accession numbers obtained from GenBank. The forms of Atherina boyeri are named according to the text.Supporting Info Item: Supporting info item - Supporting info item - </note>
<identifier type="ISSN">0022-1112</identifier>
<identifier type="eISSN">1095-8649</identifier>
<identifier type="DOI">10.1111/(ISSN)1095-8649</identifier>
<identifier type="PublisherID">JFB</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>81</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>1559</start>
<end>1577</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">689E2E59FEC96D142FC176233C98A79CCE3D06BA</identifier>
<identifier type="DOI">10.1111/j.1095-8649.2012.03404.x</identifier>
<identifier type="ArticleID">JFB3404</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/689E2E59FEC96D142FC176233C98A79CCE3D06BA/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000504 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000504 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:689E2E59FEC96D142FC176233C98A79CCE3D06BA
   |texte=   Nuclear and mitochondrial phylogenetic analysis of big‐scale sand smelt Atherina boyeri complex in Greece
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021