Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring

Identifieur interne : 000426 ( Istex/Corpus ); précédent : 000425; suivant : 000427

Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring

Auteurs : S. E. Ingebritsen ; D. L. Galloway ; E. M. Colvard ; M. L. Sorey ; R. H. Mariner

Source :

RBID : ISTEX:0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822

English descriptors

Abstract

Abstract: We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in anticipation of geothermal development. The time series average 19years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ∼130MW in the north-central Oregon Cascades to ∼6100MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15–20g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source.

Url:
DOI: 10.1016/S0377-0273(01)00207-4

Links to Exploration step

ISTEX:0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</title>
<author>
<name sortKey="Ingebritsen, S E" sort="Ingebritsen, S E" uniqKey="Ingebritsen S" first="S. E." last="Ingebritsen">S. E. Ingebritsen</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: seingebr@usgs.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galloway, D L" sort="Galloway, D L" uniqKey="Galloway D" first="D. L." last="Galloway">D. L. Galloway</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Colvard, E M" sort="Colvard, E M" uniqKey="Colvard E" first="E. M." last="Colvard">E. M. Colvard</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sorey, M L" sort="Sorey, M L" uniqKey="Sorey M" first="M. L." last="Sorey">M. L. Sorey</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mariner, R H" sort="Mariner, R H" uniqKey="Mariner R" first="R. H." last="Mariner">R. H. Mariner</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0377-0273(01)00207-4</idno>
<idno type="url">https://api.istex.fr/document/0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000426</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000426</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</title>
<author>
<name sortKey="Ingebritsen, S E" sort="Ingebritsen, S E" uniqKey="Ingebritsen S" first="S. E." last="Ingebritsen">S. E. Ingebritsen</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: seingebr@usgs.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galloway, D L" sort="Galloway, D L" uniqKey="Galloway D" first="D. L." last="Galloway">D. L. Galloway</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Colvard, E M" sort="Colvard, E M" uniqKey="Colvard E" first="E. M." last="Colvard">E. M. Colvard</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sorey, M L" sort="Sorey, M L" uniqKey="Sorey M" first="M. L." last="Sorey">M. L. Sorey</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mariner, R H" sort="Mariner, R H" uniqKey="Mariner R" first="R. H." last="Mariner">R. H. Mariner</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="ISSN">0377-0273</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">111</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="23">23</biblScope>
</imprint>
<idno type="ISSN">0377-0273</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0377-0273</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Advected</term>
<term>Advective</term>
<term>Advective heat</term>
<term>Advective heat transport</term>
<term>Arsenic</term>
<term>Borah</term>
<term>Borah peak event</term>
<term>Brantley</term>
<term>Breitenbush</term>
<term>Breitenbush river</term>
<term>Caldera</term>
<term>Cascade</term>
<term>Cascade range</term>
<term>Chloride</term>
<term>Chloride concentration</term>
<term>Clackamas river</term>
<term>Colvard</term>
<term>Continuous monitoring</term>
<term>Corwin springs</term>
<term>Costa rica</term>
<term>Crater</term>
<term>Crater lakes</term>
<term>Creek gorge</term>
<term>Dawson</term>
<term>Devils kitchen</term>
<term>Direct discharge</term>
<term>Discharge</term>
<term>Discharge measurements</term>
<term>Entire data</term>
<term>Farrar</term>
<term>Firehole</term>
<term>Firehole river</term>
<term>Fournier</term>
<term>Friedman</term>
<term>Fumarole</term>
<term>Fumaroles</term>
<term>Fumarolic</term>
<term>Fumarolic areas</term>
<term>Gardner river</term>
<term>Geochemical</term>
<term>Geochemical monitoring</term>
<term>Geological survey</term>
<term>Geological survey bulletin</term>
<term>Geological survey investigations report</term>
<term>Geological survey report</term>
<term>Geophysical</term>
<term>Geophysical research</term>
<term>Geothermal</term>
<term>Geothermal development</term>
<term>Geothermal fumaroles</term>
<term>Geothermal research</term>
<term>Geothermal resources</term>
<term>Geothermal resources area</term>
<term>Glover</term>
<term>Heat advected</term>
<term>Heat discharge</term>
<term>Heat loss</term>
<term>Horse creek</term>
<term>Human activity</term>
<term>Hydrologic</term>
<term>Hydrothermal</term>
<term>Hydrothermal discharge</term>
<term>Hydrothermal systems</term>
<term>Individual vents</term>
<term>Ingebritsen</term>
<term>Lassen</term>
<term>Long valley</term>
<term>Long valley caldera</term>
<term>Magmatic</term>
<term>Major earthquakes</term>
<term>Major streams</term>
<term>Mammoth mountain</term>
<term>Mono county</term>
<term>National park</term>
<term>Poa</term>
<term>Poas volcano</term>
<term>Regional tectonic events</term>
<term>Rojstaczer</term>
<term>Seasonality</term>
<term>Solute</term>
<term>Sorey</term>
<term>Spring systems</term>
<term>Springs creek</term>
<term>Standard deviation</term>
<term>Stream discharge</term>
<term>Thermal areas</term>
<term>Thermal features</term>
<term>Thermal springs</term>
<term>Thermal waters</term>
<term>Time series</term>
<term>Total discharge</term>
<term>Total heat</term>
<term>Total heat loss</term>
<term>Transient storage</term>
<term>Usgs</term>
<term>Uxes</term>
<term>Volcan colima</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcanic fumaroles</term>
<term>Volcanic unrest</term>
<term>Volcano</term>
<term>Volcanology</term>
<term>Wairakei</term>
<term>Waring</term>
<term>Yellowstone</term>
<term>Yellowstone region</term>
<term>Zealand</term>
<term>Zealand journal</term>
<term>fumaroles</term>
<term>hot springs</term>
<term>monitoring</term>
<term>time series</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Advected</term>
<term>Advective</term>
<term>Advective heat</term>
<term>Advective heat transport</term>
<term>Arsenic</term>
<term>Borah</term>
<term>Borah peak event</term>
<term>Brantley</term>
<term>Breitenbush</term>
<term>Breitenbush river</term>
<term>Caldera</term>
<term>Cascade</term>
<term>Cascade range</term>
<term>Chloride</term>
<term>Chloride concentration</term>
<term>Clackamas river</term>
<term>Colvard</term>
<term>Continuous monitoring</term>
<term>Corwin springs</term>
<term>Costa rica</term>
<term>Crater</term>
<term>Crater lakes</term>
<term>Creek gorge</term>
<term>Dawson</term>
<term>Devils kitchen</term>
<term>Direct discharge</term>
<term>Discharge</term>
<term>Discharge measurements</term>
<term>Entire data</term>
<term>Farrar</term>
<term>Firehole</term>
<term>Firehole river</term>
<term>Fournier</term>
<term>Friedman</term>
<term>Fumarole</term>
<term>Fumaroles</term>
<term>Fumarolic</term>
<term>Fumarolic areas</term>
<term>Gardner river</term>
<term>Geochemical</term>
<term>Geochemical monitoring</term>
<term>Geological survey</term>
<term>Geological survey bulletin</term>
<term>Geological survey investigations report</term>
<term>Geological survey report</term>
<term>Geophysical</term>
<term>Geophysical research</term>
<term>Geothermal</term>
<term>Geothermal development</term>
<term>Geothermal fumaroles</term>
<term>Geothermal research</term>
<term>Geothermal resources</term>
<term>Geothermal resources area</term>
<term>Glover</term>
<term>Heat advected</term>
<term>Heat discharge</term>
<term>Heat loss</term>
<term>Horse creek</term>
<term>Human activity</term>
<term>Hydrologic</term>
<term>Hydrothermal</term>
<term>Hydrothermal discharge</term>
<term>Hydrothermal systems</term>
<term>Individual vents</term>
<term>Ingebritsen</term>
<term>Lassen</term>
<term>Long valley</term>
<term>Long valley caldera</term>
<term>Magmatic</term>
<term>Major earthquakes</term>
<term>Major streams</term>
<term>Mammoth mountain</term>
<term>Mono county</term>
<term>National park</term>
<term>Poa</term>
<term>Poas volcano</term>
<term>Regional tectonic events</term>
<term>Rojstaczer</term>
<term>Seasonality</term>
<term>Solute</term>
<term>Sorey</term>
<term>Spring systems</term>
<term>Springs creek</term>
<term>Standard deviation</term>
<term>Stream discharge</term>
<term>Thermal areas</term>
<term>Thermal features</term>
<term>Thermal springs</term>
<term>Thermal waters</term>
<term>Time series</term>
<term>Total discharge</term>
<term>Total heat</term>
<term>Total heat loss</term>
<term>Transient storage</term>
<term>Usgs</term>
<term>Uxes</term>
<term>Volcan colima</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcanic fumaroles</term>
<term>Volcanic unrest</term>
<term>Volcano</term>
<term>Volcanology</term>
<term>Wairakei</term>
<term>Waring</term>
<term>Yellowstone</term>
<term>Yellowstone region</term>
<term>Zealand</term>
<term>Zealand journal</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in anticipation of geothermal development. The time series average 19years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ∼130MW in the north-central Oregon Cascades to ∼6100MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15–20g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>geothermal</json:string>
<json:string>hydrothermal</json:string>
<json:string>yellowstone</json:string>
<json:string>ingebritsen</json:string>
<json:string>sorey</json:string>
<json:string>volcanology</json:string>
<json:string>fumaroles</json:string>
<json:string>geothermal research</json:string>
<json:string>lassen</json:string>
<json:string>fumarolic</json:string>
<json:string>heat loss</json:string>
<json:string>stream discharge</json:string>
<json:string>advective</json:string>
<json:string>time series</json:string>
<json:string>fumarolic areas</json:string>
<json:string>colvard</json:string>
<json:string>hydrothermal discharge</json:string>
<json:string>advected</json:string>
<json:string>heat discharge</json:string>
<json:string>hydrologic</json:string>
<json:string>magmatic</json:string>
<json:string>national park</json:string>
<json:string>usgs</json:string>
<json:string>fournier</json:string>
<json:string>seasonality</json:string>
<json:string>fumarole</json:string>
<json:string>geophysical</json:string>
<json:string>hydrothermal systems</json:string>
<json:string>wairakei</json:string>
<json:string>geochemical</json:string>
<json:string>uxes</json:string>
<json:string>geothermal development</json:string>
<json:string>geological survey</json:string>
<json:string>poa</json:string>
<json:string>advective heat</json:string>
<json:string>caldera</json:string>
<json:string>friedman</json:string>
<json:string>waring</json:string>
<json:string>solute</json:string>
<json:string>volcanic fumaroles</json:string>
<json:string>geological survey investigations report</json:string>
<json:string>firehole</json:string>
<json:string>geophysical research</json:string>
<json:string>borah</json:string>
<json:string>brantley</json:string>
<json:string>breitenbush</json:string>
<json:string>rojstaczer</json:string>
<json:string>arsenic</json:string>
<json:string>volcanic</json:string>
<json:string>cascade range</json:string>
<json:string>devils kitchen</json:string>
<json:string>thermal springs</json:string>
<json:string>volcanic unrest</json:string>
<json:string>long valley</json:string>
<json:string>heat advected</json:string>
<json:string>long valley caldera</json:string>
<json:string>thermal features</json:string>
<json:string>farrar</json:string>
<json:string>firehole river</json:string>
<json:string>geothermal resources</json:string>
<json:string>yellowstone region</json:string>
<json:string>continuous monitoring</json:string>
<json:string>volcanic activity</json:string>
<json:string>springs creek</json:string>
<json:string>costa rica</json:string>
<json:string>geological survey report</json:string>
<json:string>total heat loss</json:string>
<json:string>cascade</json:string>
<json:string>creek gorge</json:string>
<json:string>gardner river</json:string>
<json:string>chloride concentration</json:string>
<json:string>thermal waters</json:string>
<json:string>horse creek</json:string>
<json:string>individual vents</json:string>
<json:string>geochemical monitoring</json:string>
<json:string>entire data</json:string>
<json:string>clackamas river</json:string>
<json:string>geothermal resources area</json:string>
<json:string>mono county</json:string>
<json:string>total discharge</json:string>
<json:string>corwin springs</json:string>
<json:string>geothermal fumaroles</json:string>
<json:string>glover</json:string>
<json:string>volcano</json:string>
<json:string>dawson</json:string>
<json:string>major streams</json:string>
<json:string>transient storage</json:string>
<json:string>mammoth mountain</json:string>
<json:string>total heat</json:string>
<json:string>standard deviation</json:string>
<json:string>advective heat transport</json:string>
<json:string>volcan colima</json:string>
<json:string>spring systems</json:string>
<json:string>breitenbush river</json:string>
<json:string>major earthquakes</json:string>
<json:string>crater lakes</json:string>
<json:string>borah peak event</json:string>
<json:string>direct discharge</json:string>
<json:string>discharge measurements</json:string>
<json:string>regional tectonic events</json:string>
<json:string>human activity</json:string>
<json:string>zealand journal</json:string>
<json:string>geological survey bulletin</json:string>
<json:string>thermal areas</json:string>
<json:string>poas volcano</json:string>
<json:string>zealand</json:string>
<json:string>chloride</json:string>
<json:string>discharge</json:string>
<json:string>crater</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>S.E. Ingebritsen</name>
<affiliations>
<json:string>U.S. Geological Survey, Menlo Park, CA 94025, USA</json:string>
<json:string>E-mail: seingebr@usgs.gov</json:string>
</affiliations>
</json:item>
<json:item>
<name>D.L. Galloway</name>
<affiliations>
<json:string>U.S. Geological Survey, Menlo Park, CA 94025, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>E.M. Colvard</name>
<affiliations>
<json:string>U.S. Geological Survey, Menlo Park, CA 94025, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>M.L. Sorey</name>
<affiliations>
<json:string>U.S. Geological Survey, Menlo Park, CA 94025, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>R.H. Mariner</name>
<affiliations>
<json:string>U.S. Geological Survey, Menlo Park, CA 94025, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>monitoring</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>time series</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hot springs</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fumaroles</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in anticipation of geothermal development. The time series average 19years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ∼130MW in the north-central Oregon Cascades to ∼6100MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15–20g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source.</abstract>
<qualityIndicators>
<score>7.58</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>544 x 743 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1508</abstractCharCount>
<pdfWordCount>10360</pdfWordCount>
<pdfCharCount>66424</pdfCharCount>
<pdfPageCount>23</pdfPageCount>
<abstractWordCount>215</abstractWordCount>
</qualityIndicators>
<title>Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</title>
<pii>
<json:string>S0377-0273(01)00207-4</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Magmas, Fluids, Ore Deposits</title>
<language>
<json:string>unknown</json:string>
</language>
<pages>
<first>263</first>
<last>289</last>
</pages>
<editor>
<json:item>
<name>J.F.H. Thompson</name>
</json:item>
</editor>
</serie>
<host>
<title>Journal of Volcanology and Geothermal Research</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0377-0273</json:string>
</issn>
<pii>
<json:string>S0377-0273(00)X0081-9</json:string>
</pii>
<volume>111</volume>
<issue>1–4</issue>
<pages>
<first>1</first>
<last>23</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0377-0273(01)00207-4</json:string>
</doi>
<id>0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science B.V.</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Conceptual model of the three types of thermal-discharge features discussed in the text: high-chloride springs; geothermal fumaroles and acid-sulfate springs; and volcanic fumaroles.</note>
<note type="content">Fig. 2: Example showing how hot-spring discharge is calculated by solute-inventory methods. Here the discharge of Austin Hot Springs, Oregon (long. 122°00′30″, lat. 45°01′18″) on 8/15/85 was calculated based on the downstream increases in chloride and sodium and by using a two-component mixing model. In the mixing-model approach, the Na/Cl ratio of the thermal component was assumed to be that of the nearest hot spring, and the Na/Cl ratio of the non-thermal component was assumed to be 5.4 based on a linear least-squares fit to stream-chemistry data. Austin Hot Springs vents are located in and near the Clackamas River, which was flowing at 9400l/s at the time of sampling. All three variants of the solute-inventory method gave Qt=120l/s. After Ingebritsen et al., (1994).</note>
<note type="content">Fig. 3: Location of sampling sites in the western United States.</note>
<note type="content">Fig. 4: Relation between variability in excess Cl flux (standard deviation/mean) and the strength of the correlation between excess Cl flux and stream discharge (r2), showing that the largest variability tends to occur where Cl flux is well-correlated with stream discharge.</note>
<note type="content">Fig. 5: Eight-year time series of excess Cl flux from sites exhibiting varying degrees of seasonality.</note>
<note type="content">Fig. 6: Time series showing long-term trends in excess Cl flux.</note>
<note type="content">Fig. 7: Map showing areas of thermal-fluid discharge and major streams in the Lassen region. ‘Steam-heated’ areas with fumaroles, acid-sulfate springs, and/or low-chloride conductively heated springs are shown as triangles (SW, Sulphur Works; LHSV; BH, Bumpass Hell; DB, Drakesbad; DK; BSL, Boiling Springs Lake; TG, Terminal Geyser). Areas with high-Cl thermal-liquid discharge are shown as solid circles (MHS, Morgan Hot Springs; GHS, Growler Hot Spring; DS, Domingo Spring).</note>
<note type="content">Fig. 8: Relation between heat advected from Devils Kitchen in Hot Springs Creek and discharge of Hot Springs Creek, Lassen Volcanic National Park, 1922–1996.</note>
<note type="content">Fig. 9: Relation between chloride concentration and stream discharge, Firehole River, Wyoming, and Falls River, Idaho. Left-hand panels show best polynomial fits to chloride vs. log streamflow (r2=0.84 for Firehole River, 0.87 for Falls River). Right-hand panels show residual chloride concentrations for each site based on departures from the best-fit polynomial. Measurements for which the absolute value of the residual chloride concentration exceeds two standard deviations of the residuals population are labeled with measurement dates. Measurements immediately preceding and following the main shock of the Borah Peak, Idaho earthquake (10/28/1983, M 7.3) are also date-labeled.</note>
<note type="content">Table 1: Chloride-flux data from selected high-chloride hot-spring systems in the western United States. Italicized type indicates sites having long-term trends in excess chloride-flux that are statistically significant at the 5% level</note>
<note type="content">Table 2: Mean advective heat flow through selected high-chloride hot-spring systems in the western United States. Values are averages for the periods of record indicated in Table 1. Subsurface temperatures are assumed constant</note>
<note type="content">Table 3: Heat-loss data from fumarolic areas in California. Sulphur Works, Little Hot Springs Valley, Bumpass Hell, and Devils Kitchen are ‘steam-heated’ geothermal areas in Lassen Volcanic National Park (see left-hand-side of conceptual model in Fig. 1). Mammoth Mountain fumarole is a low-temperature volcanic fumarole (right-hand side of Fig. 1). Values in parentheses in heat-loss column are percentages of total heat loss for that area under late-summer conditions; na denotes ‘not applicable’</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</title>
<author xml:id="author-0000">
<persName>
<forename type="first">S.E.</forename>
<surname>Ingebritsen</surname>
</persName>
<email>seingebr@usgs.gov</email>
<note type="correspondence">
<p>Corresponding author</p>
</note>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">D.L.</forename>
<surname>Galloway</surname>
</persName>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">E.M.</forename>
<surname>Colvard</surname>
</persName>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">M.L.</forename>
<surname>Sorey</surname>
</persName>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">R.H.</forename>
<surname>Mariner</surname>
</persName>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
</author>
<idno type="istex">0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822</idno>
<idno type="DOI">10.1016/S0377-0273(01)00207-4</idno>
<idno type="PII">S0377-0273(01)00207-4</idno>
</analytic>
<monogr>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="pISSN">0377-0273</idno>
<idno type="PII">S0377-0273(00)X0081-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">111</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="23">23</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in anticipation of geothermal development. The time series average 19years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ∼130MW in the north-central Oregon Cascades to ∼6100MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15–20g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>monitoring</term>
</item>
<item>
<term>time series</term>
</item>
<item>
<term>hot springs</term>
</item>
<item>
<term>fumaroles</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>VOLGEO</jid>
<aid>2319</aid>
<ce:pii>S0377-0273(01)00207-4</ce:pii>
<ce:doi>10.1016/S0377-0273(01)00207-4</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>S.E.</ce:given-name>
<ce:surname>Ingebritsen</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>seingebr@usgs.gov</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>D.L.</ce:given-name>
<ce:surname>Galloway</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>E.M.</ce:given-name>
<ce:surname>Colvard</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>M.L.</ce:given-name>
<ce:surname>Sorey</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>R.H.</ce:given-name>
<ce:surname>Mariner</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>U.S. Geological Survey, Menlo Park, CA 94025, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="18" month="9" year="2000"></ce:date-received>
<ce:date-accepted day="24" month="1" year="2001"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in anticipation of geothermal development. The time series average 19
<ce:hsp sp="0.25"></ce:hsp>
years in length and some of the Yellowstone sites have been monitored intermittently for over 30
<ce:hsp sp="0.25"></ce:hsp>
years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ∼130
<ce:hsp sp="0.25"></ce:hsp>
MW in the north-central Oregon Cascades to ∼6100
<ce:hsp sp="0.25"></ce:hsp>
MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15–20
<ce:hsp sp="0.25"></ce:hsp>
g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword" xml:lang="en">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>monitoring</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>time series</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>hot springs</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>fumaroles</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.E.</namePart>
<namePart type="family">Ingebritsen</namePart>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
<affiliation>E-mail: seingebr@usgs.gov</affiliation>
<description>Corresponding author</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.L.</namePart>
<namePart type="family">Galloway</namePart>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.M.</namePart>
<namePart type="family">Colvard</namePart>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.L.</namePart>
<namePart type="family">Sorey</namePart>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.H.</namePart>
<namePart type="family">Mariner</namePart>
<affiliation>U.S. Geological Survey, Menlo Park, CA 94025, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in anticipation of geothermal development. The time series average 19years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ∼130MW in the north-central Oregon Cascades to ∼6100MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15–20g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source.</abstract>
<note type="content">Fig. 1: Conceptual model of the three types of thermal-discharge features discussed in the text: high-chloride springs; geothermal fumaroles and acid-sulfate springs; and volcanic fumaroles.</note>
<note type="content">Fig. 2: Example showing how hot-spring discharge is calculated by solute-inventory methods. Here the discharge of Austin Hot Springs, Oregon (long. 122°00′30″, lat. 45°01′18″) on 8/15/85 was calculated based on the downstream increases in chloride and sodium and by using a two-component mixing model. In the mixing-model approach, the Na/Cl ratio of the thermal component was assumed to be that of the nearest hot spring, and the Na/Cl ratio of the non-thermal component was assumed to be 5.4 based on a linear least-squares fit to stream-chemistry data. Austin Hot Springs vents are located in and near the Clackamas River, which was flowing at 9400l/s at the time of sampling. All three variants of the solute-inventory method gave Qt=120l/s. After Ingebritsen et al., (1994).</note>
<note type="content">Fig. 3: Location of sampling sites in the western United States.</note>
<note type="content">Fig. 4: Relation between variability in excess Cl flux (standard deviation/mean) and the strength of the correlation between excess Cl flux and stream discharge (r2), showing that the largest variability tends to occur where Cl flux is well-correlated with stream discharge.</note>
<note type="content">Fig. 5: Eight-year time series of excess Cl flux from sites exhibiting varying degrees of seasonality.</note>
<note type="content">Fig. 6: Time series showing long-term trends in excess Cl flux.</note>
<note type="content">Fig. 7: Map showing areas of thermal-fluid discharge and major streams in the Lassen region. ‘Steam-heated’ areas with fumaroles, acid-sulfate springs, and/or low-chloride conductively heated springs are shown as triangles (SW, Sulphur Works; LHSV; BH, Bumpass Hell; DB, Drakesbad; DK; BSL, Boiling Springs Lake; TG, Terminal Geyser). Areas with high-Cl thermal-liquid discharge are shown as solid circles (MHS, Morgan Hot Springs; GHS, Growler Hot Spring; DS, Domingo Spring).</note>
<note type="content">Fig. 8: Relation between heat advected from Devils Kitchen in Hot Springs Creek and discharge of Hot Springs Creek, Lassen Volcanic National Park, 1922–1996.</note>
<note type="content">Fig. 9: Relation between chloride concentration and stream discharge, Firehole River, Wyoming, and Falls River, Idaho. Left-hand panels show best polynomial fits to chloride vs. log streamflow (r2=0.84 for Firehole River, 0.87 for Falls River). Right-hand panels show residual chloride concentrations for each site based on departures from the best-fit polynomial. Measurements for which the absolute value of the residual chloride concentration exceeds two standard deviations of the residuals population are labeled with measurement dates. Measurements immediately preceding and following the main shock of the Borah Peak, Idaho earthquake (10/28/1983, M 7.3) are also date-labeled.</note>
<note type="content">Table 1: Chloride-flux data from selected high-chloride hot-spring systems in the western United States. Italicized type indicates sites having long-term trends in excess chloride-flux that are statistically significant at the 5% level</note>
<note type="content">Table 2: Mean advective heat flow through selected high-chloride hot-spring systems in the western United States. Values are averages for the periods of record indicated in Table 1. Subsurface temperatures are assumed constant</note>
<note type="content">Table 3: Heat-loss data from fumarolic areas in California. Sulphur Works, Little Hot Springs Valley, Bumpass Hell, and Devils Kitchen are ‘steam-heated’ geothermal areas in Lassen Volcanic National Park (see left-hand-side of conceptual model in Fig. 1). Mammoth Mountain fumarole is a low-temperature volcanic fumarole (right-hand side of Fig. 1). Values in parentheses in heat-loss column are percentages of total heat loss for that area under late-summer conditions; na denotes ‘not applicable’</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>monitoring</topic>
<topic>time series</topic>
<topic>hot springs</topic>
<topic>fumaroles</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Volcanology and Geothermal Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>VOLGEO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">200111</dateIssued>
</originInfo>
<identifier type="ISSN">0377-0273</identifier>
<identifier type="PII">S0377-0273(00)X0081-9</identifier>
<part>
<date>200111</date>
<detail type="volume">
<number>111</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>266</end>
</extent>
<extent unit="pages">
<start>1</start>
<end>23</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822</identifier>
<identifier type="ark">ark:/67375/6H6-VH6J7HNR-Q</identifier>
<identifier type="DOI">10.1016/S0377-0273(01)00207-4</identifier>
<identifier type="PII">S0377-0273(01)00207-4</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822/metadata/json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000426 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000426 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0DFB9AAC0DFAD8EC74EC9C316079B68C8359C822
   |texte=   Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021