Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The dynamics of explosive volcanic eruptions

Identifieur interne : 000401 ( Istex/Corpus ); précédent : 000400; suivant : 000402

The dynamics of explosive volcanic eruptions

Auteurs : Andrew W. Woods

Source :

RBID : ISTEX:786174173B2851D3CFCE59D3D615D44C93095150

English descriptors

Abstract

Explosive volcanic eruptions involve the ejection of dense mixtures of ash and gas from a volcanic vent at high speed and pressure. This mixture is generated as liquid magma rises from a crustal magma chamber and decompresses, exsolving water vapor. As gas is exsolved, the mixture inflates, accelerates, and becomes foam‐like. Once the liquid films around the bubbles are unable to spread as rapidly as the bubbles are expanding through decompression, the films rupture, and a fragmented mixture of ash and volatiles ascends to the volcanic vent. On eruption from the vent, the material decompresses, either into a volcanic crater or directly into the atmosphere. In the case of free decompression, the mixture typically has a high speed, while decompression in a crater can lead to either very low or very high eruption speeds. After decompression, the hot, dense mixture begins to entrain and heat ambient air, thereby lowering the mixture density, but it also decelerates under gravity. If the eruption velocity is sufficiently high, then the material can become buoyant and will generate a buoyant ash plume, called a Plinian eruption column, which rises above the vent. In contrast, if the eruption velocity is small or the mass flux is very large, then the material will typically collapse back toward the Earth and form a dense, laterally spreading flow. Buoyant eruption columns are able to transport the material high into the atmosphere, since they provide an efficient means of converting the initial thermal energy of the mixture into potential energy through entrainment and heating of ambient air. The height of rise of such eruption columns depends upon the eruption rate, the stratification of the atmosphere, the degree of thermal disequilibrium between the particles and the air, and the amount of water vapor in the atmosphere. Dense, hot ash flows, generated by collapsing fountains, transport ash and clasts laterally from the vent, sedimenting many of the larger clasts and entraining air en route. As a result, the density of the mixture may fall below that of the atmosphere, and the finer‐grained solid material may thereby become buoyant and rise from the flow. The distance it travels increases with both the cloud mass and the mean particle size. The ensuing buoyant ash plume, called a coignimbrite eruption column, may have a source several kilometers from the original volcanic vent. Once the thermal energy of an eruption column has become exhausted, the ash intrudes laterally into the atmosphere. Ultimately, the cloud is swept downwind, where sedimentation of ash leads to fall deposits over hundreds of kilometers from the volcano.

Url:
DOI: 10.1029/95RG02096

Links to Exploration step

ISTEX:786174173B2851D3CFCE59D3D615D44C93095150

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The dynamics of explosive volcanic eruptions</title>
<author wicri:is="90%">
<name sortKey="Woods, Andrew W" sort="Woods, Andrew W" uniqKey="Woods A" first="Andrew W." last="Woods">Andrew W. Woods</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:786174173B2851D3CFCE59D3D615D44C93095150</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1029/95RG02096</idno>
<idno type="url">https://api.istex.fr/document/786174173B2851D3CFCE59D3D615D44C93095150/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000401</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000401</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The dynamics of explosive volcanic eruptions</title>
<author wicri:is="90%">
<name sortKey="Woods, Andrew W" sort="Woods, Andrew W" uniqKey="Woods A" first="Andrew W." last="Woods">Andrew W. Woods</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Reviews of Geophysics</title>
<title level="j" type="alt">REVIEWS OF GEOPHYSICS</title>
<idno type="ISSN">8755-1209</idno>
<idno type="eISSN">1944-9208</idno>
<imprint>
<biblScope unit="vol">33</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="495">495</biblScope>
<biblScope unit="page" to="530">530</biblScope>
<biblScope unit="page-count">36</biblScope>
<date type="published" when="1995-11">1995-11</date>
</imprint>
<idno type="ISSN">8755-1209</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">8755-1209</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accretionary lapilli</term>
<term>Ambient</term>
<term>Ambient fluid</term>
<term>Ascent</term>
<term>Ascent speed</term>
<term>Bower</term>
<term>Buoyancy</term>
<term>Buoyant</term>
<term>Buoyant cloud</term>
<term>Buoyant column</term>
<term>Buoyant eruption column</term>
<term>Buoyant plume</term>
<term>Bursik</term>
<term>Calculations show</term>
<term>Caulfield</term>
<term>Chamber depth</term>
<term>Coignimbrite</term>
<term>Column collapse</term>
<term>Conduit</term>
<term>Conduit radius</term>
<term>Conduit walls</term>
<term>Control volume</term>
<term>Country rock</term>
<term>Crater</term>
<term>Crater lake</term>
<term>Critical conditions</term>
<term>Critical eruption velocity</term>
<term>Decompression</term>
<term>Disequilibrium</term>
<term>Dispersal</term>
<term>Dynamics</term>
<term>Earth planet</term>
<term>Entrained</term>
<term>Entrainment</term>
<term>Entrainment coefficient</term>
<term>Eruption</term>
<term>Eruption column</term>
<term>Eruption column model</term>
<term>Eruption columns</term>
<term>Eruption phenomena</term>
<term>Eruption rate</term>
<term>Eruption rates</term>
<term>Eruption style</term>
<term>Eruption velocity</term>
<term>Explosive eruptions</term>
<term>Explosiveeruptions</term>
<term>Exsolved</term>
<term>Fluid mech</term>
<term>Fragmented mixture</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geophysics woods</term>
<term>Geotherm</term>
<term>Good agreement</term>
<term>Grain size</term>
<term>Gravitational intrusion</term>
<term>High eruption rates</term>
<term>Initial density</term>
<term>Initial temperature</term>
<term>Issuingfrom</term>
<term>Jaupart</term>
<term>Kienle</term>
<term>Laterally</term>
<term>Lett</term>
<term>Liquid magma</term>
<term>Lithic</term>
<term>Lithics</term>
<term>Macedonio</term>
<term>Macmillan magazines</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Major impact</term>
<term>Mass eruption rate</term>
<term>Mass flux</term>
<term>Mass fraction</term>
<term>Massof</term>
<term>Moist environments</term>
<term>Neutral buoyancy height</term>
<term>Numerical models</term>
<term>Particle fallout</term>
<term>Plinian</term>
<term>Plinian eruption column</term>
<term>Plume</term>
<term>Pyroclastic flows</term>
<term>Redoubt</term>
<term>Reviews geophysics</term>
<term>Reviewsof</term>
<term>Reviewsof geophysics</term>
<term>Reviewsof geophysics woods</term>
<term>Rise height</term>
<term>Sedimentation</term>
<term>Sigurdsson</term>
<term>Silicic</term>
<term>Silicic magma</term>
<term>Source conditions</term>
<term>Subsonic</term>
<term>Such eruptions</term>
<term>Supersaturation</term>
<term>Surface water</term>
<term>Thermal disequilibrium</term>
<term>Thermal energy</term>
<term>Thermal equilibrium</term>
<term>Umbrella cloud</term>
<term>Vent</term>
<term>Vent altitude</term>
<term>Vent pressure</term>
<term>Viscosity increases</term>
<term>Viscous</term>
<term>Void fraction</term>
<term>Volatile</term>
<term>Volatile content</term>
<term>Volcanic</term>
<term>Volcanic conduits</term>
<term>Volcanic eruptions</term>
<term>Volcanic plumes</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water vapor</term>
<term>Wide range</term>
<term>Wind shear</term>
<term>Wohletz</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accretionary lapilli</term>
<term>Ambient</term>
<term>Ambient fluid</term>
<term>Ascent</term>
<term>Ascent speed</term>
<term>Bower</term>
<term>Buoyancy</term>
<term>Buoyant</term>
<term>Buoyant cloud</term>
<term>Buoyant column</term>
<term>Buoyant eruption column</term>
<term>Buoyant plume</term>
<term>Bursik</term>
<term>Calculations show</term>
<term>Caulfield</term>
<term>Chamber depth</term>
<term>Coignimbrite</term>
<term>Column collapse</term>
<term>Conduit</term>
<term>Conduit radius</term>
<term>Conduit walls</term>
<term>Control volume</term>
<term>Country rock</term>
<term>Crater</term>
<term>Crater lake</term>
<term>Critical conditions</term>
<term>Critical eruption velocity</term>
<term>Decompression</term>
<term>Disequilibrium</term>
<term>Dispersal</term>
<term>Dynamics</term>
<term>Earth planet</term>
<term>Entrained</term>
<term>Entrainment</term>
<term>Entrainment coefficient</term>
<term>Eruption</term>
<term>Eruption column</term>
<term>Eruption column model</term>
<term>Eruption columns</term>
<term>Eruption phenomena</term>
<term>Eruption rate</term>
<term>Eruption rates</term>
<term>Eruption style</term>
<term>Eruption velocity</term>
<term>Explosive eruptions</term>
<term>Explosiveeruptions</term>
<term>Exsolved</term>
<term>Fluid mech</term>
<term>Fragmented mixture</term>
<term>Geophys</term>
<term>Geophysics</term>
<term>Geophysics woods</term>
<term>Geotherm</term>
<term>Good agreement</term>
<term>Grain size</term>
<term>Gravitational intrusion</term>
<term>High eruption rates</term>
<term>Initial density</term>
<term>Initial temperature</term>
<term>Issuingfrom</term>
<term>Jaupart</term>
<term>Kienle</term>
<term>Laterally</term>
<term>Lett</term>
<term>Liquid magma</term>
<term>Lithic</term>
<term>Lithics</term>
<term>Macedonio</term>
<term>Macmillan magazines</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Major impact</term>
<term>Mass eruption rate</term>
<term>Mass flux</term>
<term>Mass fraction</term>
<term>Massof</term>
<term>Moist environments</term>
<term>Neutral buoyancy height</term>
<term>Numerical models</term>
<term>Particle fallout</term>
<term>Plinian</term>
<term>Plinian eruption column</term>
<term>Plume</term>
<term>Pyroclastic flows</term>
<term>Redoubt</term>
<term>Reviews geophysics</term>
<term>Reviewsof</term>
<term>Reviewsof geophysics</term>
<term>Reviewsof geophysics woods</term>
<term>Rise height</term>
<term>Sedimentation</term>
<term>Sigurdsson</term>
<term>Silicic</term>
<term>Silicic magma</term>
<term>Source conditions</term>
<term>Subsonic</term>
<term>Such eruptions</term>
<term>Supersaturation</term>
<term>Surface water</term>
<term>Thermal disequilibrium</term>
<term>Thermal energy</term>
<term>Thermal equilibrium</term>
<term>Umbrella cloud</term>
<term>Vent</term>
<term>Vent altitude</term>
<term>Vent pressure</term>
<term>Viscosity increases</term>
<term>Viscous</term>
<term>Void fraction</term>
<term>Volatile</term>
<term>Volatile content</term>
<term>Volcanic</term>
<term>Volcanic conduits</term>
<term>Volcanic eruptions</term>
<term>Volcanic plumes</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water vapor</term>
<term>Wide range</term>
<term>Wind shear</term>
<term>Wohletz</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Explosive volcanic eruptions involve the ejection of dense mixtures of ash and gas from a volcanic vent at high speed and pressure. This mixture is generated as liquid magma rises from a crustal magma chamber and decompresses, exsolving water vapor. As gas is exsolved, the mixture inflates, accelerates, and becomes foam‐like. Once the liquid films around the bubbles are unable to spread as rapidly as the bubbles are expanding through decompression, the films rupture, and a fragmented mixture of ash and volatiles ascends to the volcanic vent. On eruption from the vent, the material decompresses, either into a volcanic crater or directly into the atmosphere. In the case of free decompression, the mixture typically has a high speed, while decompression in a crater can lead to either very low or very high eruption speeds. After decompression, the hot, dense mixture begins to entrain and heat ambient air, thereby lowering the mixture density, but it also decelerates under gravity. If the eruption velocity is sufficiently high, then the material can become buoyant and will generate a buoyant ash plume, called a Plinian eruption column, which rises above the vent. In contrast, if the eruption velocity is small or the mass flux is very large, then the material will typically collapse back toward the Earth and form a dense, laterally spreading flow. Buoyant eruption columns are able to transport the material high into the atmosphere, since they provide an efficient means of converting the initial thermal energy of the mixture into potential energy through entrainment and heating of ambient air. The height of rise of such eruption columns depends upon the eruption rate, the stratification of the atmosphere, the degree of thermal disequilibrium between the particles and the air, and the amount of water vapor in the atmosphere. Dense, hot ash flows, generated by collapsing fountains, transport ash and clasts laterally from the vent, sedimenting many of the larger clasts and entraining air en route. As a result, the density of the mixture may fall below that of the atmosphere, and the finer‐grained solid material may thereby become buoyant and rise from the flow. The distance it travels increases with both the cloud mass and the mean particle size. The ensuing buoyant ash plume, called a coignimbrite eruption column, may have a source several kilometers from the original volcanic vent. Once the thermal energy of an eruption column has become exhausted, the ash intrudes laterally into the atmosphere. Ultimately, the cloud is swept downwind, where sedimentation of ash leads to fall deposits over hundreds of kilometers from the volcano.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>magma</json:string>
<json:string>eruption</json:string>
<json:string>geophysics</json:string>
<json:string>conduit</json:string>
<json:string>entrainment</json:string>
<json:string>explosive eruptions</json:string>
<json:string>volcanol</json:string>
<json:string>eruption column</json:string>
<json:string>geophys</json:string>
<json:string>eruption rate</json:string>
<json:string>ambient</json:string>
<json:string>bursik</json:string>
<json:string>crater</json:string>
<json:string>plume</json:string>
<json:string>wohletz</json:string>
<json:string>jaupart</json:string>
<json:string>volatile content</json:string>
<json:string>buoyant</json:string>
<json:string>plinian</json:string>
<json:string>surface water</json:string>
<json:string>disequilibrium</json:string>
<json:string>eruption columns</json:string>
<json:string>void fraction</json:string>
<json:string>supersaturation</json:string>
<json:string>lithic</json:string>
<json:string>geotherm</json:string>
<json:string>explosiveeruptions</json:string>
<json:string>mass flux</json:string>
<json:string>reviewsof</json:string>
<json:string>coignimbrite</json:string>
<json:string>mass eruption rate</json:string>
<json:string>caulfield</json:string>
<json:string>silicic</json:string>
<json:string>geophysics woods</json:string>
<json:string>entrained</json:string>
<json:string>sigurdsson</json:string>
<json:string>eruption velocity</json:string>
<json:string>massof</json:string>
<json:string>mass fraction</json:string>
<json:string>thermal disequilibrium</json:string>
<json:string>initial temperature</json:string>
<json:string>subsonic</json:string>
<json:string>lett</json:string>
<json:string>eruption rates</json:string>
<json:string>buoyancy</json:string>
<json:string>volcanic</json:string>
<json:string>conduit walls</json:string>
<json:string>buoyant column</json:string>
<json:string>rise height</json:string>
<json:string>exsolved</json:string>
<json:string>kienle</json:string>
<json:string>laterally</json:string>
<json:string>column collapse</json:string>
<json:string>lithics</json:string>
<json:string>buoyant plume</json:string>
<json:string>redoubt</json:string>
<json:string>issuingfrom</json:string>
<json:string>macedonio</json:string>
<json:string>dynamics</json:string>
<json:string>critical conditions</json:string>
<json:string>water vapor</json:string>
<json:string>thermal energy</json:string>
<json:string>volatile</json:string>
<json:string>ascent</json:string>
<json:string>control volume</json:string>
<json:string>accretionary lapilli</json:string>
<json:string>eruption style</json:string>
<json:string>volcano</json:string>
<json:string>bower</json:string>
<json:string>grain size</json:string>
<json:string>source conditions</json:string>
<json:string>reviews geophysics</json:string>
<json:string>umbrella cloud</json:string>
<json:string>earth planet</json:string>
<json:string>reviewsof geophysics</json:string>
<json:string>critical eruption velocity</json:string>
<json:string>silicic magma</json:string>
<json:string>reviewsof geophysics woods</json:string>
<json:string>magma chamber</json:string>
<json:string>entrainment coefficient</json:string>
<json:string>liquid magma</json:string>
<json:string>major impact</json:string>
<json:string>plinian eruption column</json:string>
<json:string>calculations show</json:string>
<json:string>pyroclastic flows</json:string>
<json:string>numerical models</json:string>
<json:string>dispersal</json:string>
<json:string>viscous</json:string>
<json:string>decompression</json:string>
<json:string>sedimentation</json:string>
<json:string>vent pressure</json:string>
<json:string>macmillan magazines</json:string>
<json:string>volcanic conduits</json:string>
<json:string>ascent speed</json:string>
<json:string>particle fallout</json:string>
<json:string>viscosity increases</json:string>
<json:string>eruption column model</json:string>
<json:string>fragmented mixture</json:string>
<json:string>conduit radius</json:string>
<json:string>country rock</json:string>
<json:string>fluid mech</json:string>
<json:string>thermal equilibrium</json:string>
<json:string>wide range</json:string>
<json:string>initial density</json:string>
<json:string>buoyant eruption column</json:string>
<json:string>volcanic plumes</json:string>
<json:string>vent altitude</json:string>
<json:string>moist environments</json:string>
<json:string>ambient fluid</json:string>
<json:string>eruption phenomena</json:string>
<json:string>good agreement</json:string>
<json:string>such eruptions</json:string>
<json:string>volcanic eruptions</json:string>
<json:string>buoyant cloud</json:string>
<json:string>gravitational intrusion</json:string>
<json:string>chamber depth</json:string>
<json:string>neutral buoyancy height</json:string>
<json:string>wind shear</json:string>
<json:string>crater lake</json:string>
<json:string>high eruption rates</json:string>
<json:string>vent</json:string>
<json:string>subsonic velocities</json:string>
<json:string>vent pressureis</json:string>
<json:string>model equations</json:string>
<json:string>atmospheric pressure</json:string>
<json:string>masseruption rate</json:string>
<json:string>gravitational deceleration</json:string>
<json:string>plinian eruption columns</json:string>
<json:string>initial velocity</json:string>
<json:string>large mass fraction</json:string>
<json:string>plinian column</json:string>
<json:string>buoyant eruption columns</json:string>
<json:string>fluid dynamics</json:string>
<json:string>vulcanian eruptions</json:string>
<json:string>frictional forces</json:string>
<json:string>bull volcanol</json:string>
<json:string>dense mixture</json:string>
<json:string>solid density</json:string>
<json:string>eruption plume</json:string>
<json:string>giant eruption</json:string>
<json:string>analogue laboratory experiments</json:string>
<json:string>gravitational work</json:string>
<json:string>flow dynamics</json:string>
<json:string>coignimbrite eruption columns</json:string>
<json:string>simple form</json:string>
<json:string>steady state</json:string>
<json:string>steady flow energy equation</json:string>
<json:string>kinetic energy</json:string>
<json:string>explosive volcanism</json:string>
<json:string>model calculations</json:string>
<json:string>surface area</json:string>
<json:string>specific heat</json:string>
<json:string>magma exsolves volatiles</json:string>
<json:string>initial radius</json:string>
<json:string>greater mass</json:string>
<json:string>viscous stresses</json:string>
<json:string>eruption temperature</json:string>
<json:string>turbulent flow</json:string>
<json:string>thrust region</json:string>
<json:string>conduit flow</json:string>
<json:string>critical value</json:string>
<json:string>liquid films</json:string>
<json:string>ambient stratification</json:string>
<json:string>lithic temperature</json:string>
<json:string>several tens</json:string>
<json:string>lithostatic pressure</json:string>
<json:string>order description</json:string>
<json:string>critical velocity</json:string>
<json:string>column dynamics</json:string>
<json:string>solid grains</json:string>
<json:string>present calculations</json:string>
<json:string>volatiles exsolved</json:string>
<json:string>buoyant plumes</json:string>
<json:string>magma viscosity</json:string>
<json:string>lower bandelier tuff</json:string>
<json:string>important impact</json:string>
<json:string>small eruption columns</json:string>
<json:string>eruption rate decreasesas</json:string>
<json:string>basaltic fissure eruptions</json:string>
<json:string>small amounts</json:string>
<json:string>eruption cloud</json:string>
<json:string>buoyant plume formation</json:string>
<json:string>fall deposit</json:string>
<json:string>eruption column models</json:string>
<json:string>basaltic eruptions</json:string>
<json:string>frictional force</json:string>
<json:string>saline water</json:string>
<json:string>model prediction</json:string>
<json:string>dome collapse</json:string>
<json:string>magma fragments</json:string>
<json:string>eruption conditions</json:string>
<json:string>small crater</json:string>
<json:string>crater geometry</json:string>
<json:string>fragmentation process</json:string>
<json:string>bubbly magma</json:string>
<json:string>laboratory experiments</json:string>
<json:string>such flows</json:string>
<json:string>grain size distribution</json:string>
<json:string>flow change</json:string>
<json:string>grain sizes</json:string>
<json:string>coignimbrite column</json:string>
<json:string>particle size</json:string>
<json:string>coignimbrite cloud</json:string>
<json:string>experimental results</json:string>
<json:string>turbulent dispersion</json:string>
<json:string>critical supersaturation</json:string>
<json:string>first hours</json:string>
<json:string>solid material</json:string>
<json:string>effusive eruptions</json:string>
<json:string>larger clasts</json:string>
<json:string>volcanic vent</json:string>
<json:string>lithic fraction</json:string>
<json:string>laboratory study</json:string>
<json:string>woods</json:string>
<json:string>carey</json:string>
<json:string>frictional</json:string>
<json:string>collapse</json:string>
<json:string>fragmentation</json:string>
<json:string>gravitational</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Andrew W. Woods</name>
</json:item>
</author>
<articleId>
<json:string>95RG02096</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>reviewArticle</json:string>
</originalGenre>
<abstract>Explosive volcanic eruptions involve the ejection of dense mixtures of ash and gas from a volcanic vent at high speed and pressure. This mixture is generated as liquid magma rises from a crustal magma chamber and decompresses, exsolving water vapor. As gas is exsolved, the mixture inflates, accelerates, and becomes foam‐like. Once the liquid films around the bubbles are unable to spread as rapidly as the bubbles are expanding through decompression, the films rupture, and a fragmented mixture of ash and volatiles ascends to the volcanic vent. On eruption from the vent, the material decompresses, either into a volcanic crater or directly into the atmosphere. In the case of free decompression, the mixture typically has a high speed, while decompression in a crater can lead to either very low or very high eruption speeds. After decompression, the hot, dense mixture begins to entrain and heat ambient air, thereby lowering the mixture density, but it also decelerates under gravity. If the eruption velocity is sufficiently high, then the material can become buoyant and will generate a buoyant ash plume, called a Plinian eruption column, which rises above the vent. In contrast, if the eruption velocity is small or the mass flux is very large, then the material will typically collapse back toward the Earth and form a dense, laterally spreading flow. Buoyant eruption columns are able to transport the material high into the atmosphere, since they provide an efficient means of converting the initial thermal energy of the mixture into potential energy through entrainment and heating of ambient air. The height of rise of such eruption columns depends upon the eruption rate, the stratification of the atmosphere, the degree of thermal disequilibrium between the particles and the air, and the amount of water vapor in the atmosphere. Dense, hot ash flows, generated by collapsing fountains, transport ash and clasts laterally from the vent, sedimenting many of the larger clasts and entraining air en route. As a result, the density of the mixture may fall below that of the atmosphere, and the finer‐grained solid material may thereby become buoyant and rise from the flow. The distance it travels increases with both the cloud mass and the mean particle size. The ensuing buoyant ash plume, called a coignimbrite eruption column, may have a source several kilometers from the original volcanic vent. Once the thermal energy of an eruption column has become exhausted, the ash intrudes laterally into the atmosphere. Ultimately, the cloud is swept downwind, where sedimentation of ash leads to fall deposits over hundreds of kilometers from the volcano.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>586 x 813 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2668</abstractCharCount>
<pdfWordCount>16531</pdfWordCount>
<pdfCharCount>104157</pdfCharCount>
<pdfPageCount>36</pdfPageCount>
<abstractWordCount>427</abstractWordCount>
</qualityIndicators>
<title>The dynamics of explosive volcanic eruptions</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Reviews of Geophysics</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1944-9208</json:string>
</doi>
<issn>
<json:string>8755-1209</json:string>
</issn>
<eissn>
<json:string>1944-9208</json:string>
</eissn>
<publisherId>
<json:string>ROG</json:string>
</publisherId>
<volume>33</volume>
<issue>4</issue>
<pages>
<first>495</first>
<last>530</last>
<total>36</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>SEISMOLOGY</value>
</json:item>
<json:item>
<value>Continental crust</value>
</json:item>
<json:item>
<value>Lithosphere</value>
</json:item>
<json:item>
<value>Surface waves and free oscillations</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1029/95RG02096</json:string>
</doi>
<id>786174173B2851D3CFCE59D3D615D44C93095150</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/786174173B2851D3CFCE59D3D615D44C93095150/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/786174173B2851D3CFCE59D3D615D44C93095150/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/786174173B2851D3CFCE59D3D615D44C93095150/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">The dynamics of explosive volcanic eruptions</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<licence>Copyright 1995 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="1995-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="review-article" source="reviewArticle" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="review-article">
<analytic>
<title level="a" type="main">The dynamics of explosive volcanic eruptions</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Andrew W.</forename>
<surname>Woods</surname>
</persName>
</author>
<idno type="istex">786174173B2851D3CFCE59D3D615D44C93095150</idno>
<idno type="DOI">10.1029/95RG02096</idno>
<idno type="editorialOffice">95RG02096</idno>
<idno type="unit">ROG1450</idno>
<idno type="toTypesetVersion">file:ROG.ROG1450.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Reviews of Geophysics</title>
<title level="j" type="alt">REVIEWS OF GEOPHYSICS</title>
<idno type="pISSN">8755-1209</idno>
<idno type="eISSN">1944-9208</idno>
<idno type="book-DOI">10.1002/(ISSN)1944-9208</idno>
<idno type="book-part-DOI">10.1002/rog.v33.4</idno>
<idno type="product">ROG</idno>
<idno type="coden">REGEEP</idno>
<imprint>
<biblScope unit="vol">33</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="495">495</biblScope>
<biblScope unit="page" to="530">530</biblScope>
<biblScope unit="page-count">36</biblScope>
<date type="published" when="1995-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="rog1450-para-0001">Explosive volcanic eruptions involve the ejection of dense mixtures of ash and gas from a volcanic vent at high speed and pressure. This mixture is generated as liquid magma rises from a crustal magma chamber and decompresses, exsolving water vapor. As gas is exsolved, the mixture inflates, accelerates, and becomes foam‐like. Once the liquid films around the bubbles are unable to spread as rapidly as the bubbles are expanding through decompression, the films rupture, and a fragmented mixture of ash and volatiles ascends to the volcanic vent. On eruption from the vent, the material decompresses, either into a volcanic crater or directly into the atmosphere. In the case of free decompression, the mixture typically has a high speed, while decompression in a crater can lead to either very low or very high eruption speeds. After decompression, the hot, dense mixture begins to entrain and heat ambient air, thereby lowering the mixture density, but it also decelerates under gravity. If the eruption velocity is sufficiently high, then the material can become buoyant and will generate a buoyant ash plume, called a Plinian eruption column, which rises above the vent. In contrast, if the eruption velocity is small or the mass flux is very large, then the material will typically collapse back toward the Earth and form a dense, laterally spreading flow. Buoyant eruption columns are able to transport the material high into the atmosphere, since they provide an efficient means of converting the initial thermal energy of the mixture into potential energy through entrainment and heating of ambient air. The height of rise of such eruption columns depends upon the eruption rate, the stratification of the atmosphere, the degree of thermal disequilibrium between the particles and the air, and the amount of water vapor in the atmosphere. Dense, hot ash flows, generated by collapsing fountains, transport ash and clasts laterally from the vent, sedimenting many of the larger clasts and entraining air en route. As a result, the density of the mixture may fall below that of the atmosphere, and the finer‐grained solid material may thereby become buoyant and rise from the flow. The distance it travels increases with both the cloud mass and the mean particle size. The ensuing buoyant ash plume, called a coignimbrite eruption column, may have a source several kilometers from the original volcanic vent. Once the thermal energy of an eruption column has become exhausted, the ash intrudes laterally into the atmosphere. Ultimately, the cloud is swept downwind, where sedimentation of ash leads to fall deposits over hundreds of kilometers from the volcano.</p>
</abstract>
<textClass>
<classCode scheme="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/786174173B2851D3CFCE59D3D615D44C93095150/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="rog1450">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-9208</doi>
<issn type="print">8755-1209</issn>
<issn type="electronic">1944-9208</issn>
<idGroup>
<id type="product" value="ROG"></id>
<id type="coden" value="REGEEP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="REVIEWS OF GEOPHYSICS">Reviews of Geophysics</title>
<title type="short">Rev. Geophys.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi>10.1002/rog.v33.4</doi>
<numberingGroup>
<numbering type="journalVolume" number="33">33</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="1995-11">November 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="reviewArticle" position="40" status="forIssue">
<doi>10.1029/95RG02096</doi>
<idGroup>
<id type="editorialOffice" value="95RG02096"></id>
<id type="unit" value="ROG1450"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="36"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 1995 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="publishedPrint" date="1995-11"></event>
<event type="firstOnline" date="2010-06-14"></event>
<event type="publishedOnlineFinalForm" date="2010-06-14"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-02-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-08"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">495</numbering>
<numbering type="pageLast">530</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7205">Continental crust</subject>
<subject href="http://psi.agu.org/taxonomy5/7218">Lithosphere</subject>
<subject href="http://psi.agu.org/taxonomy5/7255">Surface waves and free oscillations</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="rog1450-cit-0000" type="self">
<author>
<familyName>Woods</familyName>
,
<givenNames>A. W.</givenNames>
</author>
(
<pubYear year="1995">1995</pubYear>
),
<articleTitle>The dynamics of explosive volcanic eruptions</articleTitle>
,
<journalTitle>Rev. Geophys.</journalTitle>
,
<vol>33</vol>
(
<issue>4</issue>
),
<pageFirst>495</pageFirst>
<pageLast>530</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/95RG02096">10.1029/95RG02096</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:ROG.ROG1450.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">The dynamics of explosive volcanic eruptions</title>
<title type="shortAuthors">Woods</title>
</titleGroup>
<creators>
<creator xml:id="rog1450-cr-0001">
<personName>
<givenNames>Andrew W.</givenNames>
<familyName>Woods</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="rog1450-para-0001">Explosive volcanic eruptions involve the ejection of dense mixtures of ash and gas from a volcanic vent at high speed and pressure. This mixture is generated as liquid magma rises from a crustal magma chamber and decompresses, exsolving water vapor. As gas is exsolved, the mixture inflates, accelerates, and becomes foam‐like. Once the liquid films around the bubbles are unable to spread as rapidly as the bubbles are expanding through decompression, the films rupture, and a fragmented mixture of ash and volatiles ascends to the volcanic vent. On eruption from the vent, the material decompresses, either into a volcanic crater or directly into the atmosphere. In the case of free decompression, the mixture typically has a high speed, while decompression in a crater can lead to either very low or very high eruption speeds. After decompression, the hot, dense mixture begins to entrain and heat ambient air, thereby lowering the mixture density, but it also decelerates under gravity. If the eruption velocity is sufficiently high, then the material can become buoyant and will generate a buoyant ash plume, called a Plinian eruption column, which rises above the vent. In contrast, if the eruption velocity is small or the mass flux is very large, then the material will typically collapse back toward the Earth and form a dense, laterally spreading flow. Buoyant eruption columns are able to transport the material high into the atmosphere, since they provide an efficient means of converting the initial thermal energy of the mixture into potential energy through entrainment and heating of ambient air. The height of rise of such eruption columns depends upon the eruption rate, the stratification of the atmosphere, the degree of thermal disequilibrium between the particles and the air, and the amount of water vapor in the atmosphere. Dense, hot ash flows, generated by collapsing fountains, transport ash and clasts laterally from the vent, sedimenting many of the larger clasts and entraining air en route. As a result, the density of the mixture may fall below that of the atmosphere, and the finer‐grained solid material may thereby become buoyant and rise from the flow. The distance it travels increases with both the cloud mass and the mean particle size. The ensuing buoyant ash plume, called a coignimbrite eruption column, may have a source several kilometers from the original volcanic vent. Once the thermal energy of an eruption column has become exhausted, the ash intrudes laterally into the atmosphere. Ultimately, the cloud is swept downwind, where sedimentation of ash leads to fall deposits over hundreds of kilometers from the volcano.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The dynamics of explosive volcanic eruptions</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The dynamics of explosive volcanic eruptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew W.</namePart>
<namePart type="family">Woods</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="reviewArticle"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1995-11</dateIssued>
<edition>Woods, A. W. (1995), The dynamics of explosive volcanic eruptions, Rev. Geophys., 33(4), 495–530, doi:10.1029/95RG02096.</edition>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Explosive volcanic eruptions involve the ejection of dense mixtures of ash and gas from a volcanic vent at high speed and pressure. This mixture is generated as liquid magma rises from a crustal magma chamber and decompresses, exsolving water vapor. As gas is exsolved, the mixture inflates, accelerates, and becomes foam‐like. Once the liquid films around the bubbles are unable to spread as rapidly as the bubbles are expanding through decompression, the films rupture, and a fragmented mixture of ash and volatiles ascends to the volcanic vent. On eruption from the vent, the material decompresses, either into a volcanic crater or directly into the atmosphere. In the case of free decompression, the mixture typically has a high speed, while decompression in a crater can lead to either very low or very high eruption speeds. After decompression, the hot, dense mixture begins to entrain and heat ambient air, thereby lowering the mixture density, but it also decelerates under gravity. If the eruption velocity is sufficiently high, then the material can become buoyant and will generate a buoyant ash plume, called a Plinian eruption column, which rises above the vent. In contrast, if the eruption velocity is small or the mass flux is very large, then the material will typically collapse back toward the Earth and form a dense, laterally spreading flow. Buoyant eruption columns are able to transport the material high into the atmosphere, since they provide an efficient means of converting the initial thermal energy of the mixture into potential energy through entrainment and heating of ambient air. The height of rise of such eruption columns depends upon the eruption rate, the stratification of the atmosphere, the degree of thermal disequilibrium between the particles and the air, and the amount of water vapor in the atmosphere. Dense, hot ash flows, generated by collapsing fountains, transport ash and clasts laterally from the vent, sedimenting many of the larger clasts and entraining air en route. As a result, the density of the mixture may fall below that of the atmosphere, and the finer‐grained solid material may thereby become buoyant and rise from the flow. The distance it travels increases with both the cloud mass and the mean particle size. The ensuing buoyant ash plume, called a coignimbrite eruption column, may have a source several kilometers from the original volcanic vent. Once the thermal energy of an eruption column has become exhausted, the ash intrudes laterally into the atmosphere. Ultimately, the cloud is swept downwind, where sedimentation of ash leads to fall deposits over hundreds of kilometers from the volcano.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Reviews of Geophysics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Rev. Geophys.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7205">Continental crust</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7218">Lithosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7255">Surface waves and free oscillations</topic>
</subject>
<identifier type="ISSN">8755-1209</identifier>
<identifier type="eISSN">1944-9208</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-9208</identifier>
<identifier type="CODEN">REGEEP</identifier>
<identifier type="PublisherID">ROG</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>33</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>495</start>
<end>530</end>
<total>36</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">786174173B2851D3CFCE59D3D615D44C93095150</identifier>
<identifier type="DOI">10.1029/95RG02096</identifier>
<identifier type="ArticleID">95RG02096</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 1995 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/786174173B2851D3CFCE59D3D615D44C93095150/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000401 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000401 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:786174173B2851D3CFCE59D3D615D44C93095150
   |texte=   The dynamics of explosive volcanic eruptions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021