Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera

Identifieur interne : 000396 ( Istex/Corpus ); précédent : 000395; suivant : 000397

Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera

Auteurs : Shaul Hurwitz ; Robert N. Harris ; Cynthia A. Werner ; Fred Murphy

Source :

RBID : ISTEX:8877F6C700ADD276962A1D7F861F95535BEC8023

English descriptors

Abstract

Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid‐sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ∼35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).
Conductive, advective, and evaporative heat outputs were quantified Heat output from Yellowstone ranges from 4.9 GW to 9.1 GW Water vapor transports 4.0 to 8.0 GW of heat

Url:
DOI: 10.1029/2012JB009463

Links to Exploration step

ISTEX:8877F6C700ADD276962A1D7F861F95535BEC8023

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
<author>
<name sortKey="Hurwitz, Shaul" sort="Hurwitz, Shaul" uniqKey="Hurwitz S" first="Shaul" last="Hurwitz">Shaul Hurwitz</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, California, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: shaulh@usgs.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harris, Robert N" sort="Harris, Robert N" uniqKey="Harris R" first="Robert N." last="Harris">Robert N. Harris</name>
<affiliation>
<mods:affiliation>College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, Cynthia A" sort="Werner, Cynthia A" uniqKey="Werner C" first="Cynthia A." last="Werner">Cynthia A. Werner</name>
<affiliation>
<mods:affiliation>Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, Alaska, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphy, Fred" sort="Murphy, Fred" uniqKey="Murphy F" first="Fred" last="Murphy">Fred Murphy</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, California, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8877F6C700ADD276962A1D7F861F95535BEC8023</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2012JB009463</idno>
<idno type="url">https://api.istex.fr/document/8877F6C700ADD276962A1D7F861F95535BEC8023/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000396</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000396</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
<author>
<name sortKey="Hurwitz, Shaul" sort="Hurwitz, Shaul" uniqKey="Hurwitz S" first="Shaul" last="Hurwitz">Shaul Hurwitz</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, California, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: shaulh@usgs.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harris, Robert N" sort="Harris, Robert N" uniqKey="Harris R" first="Robert N." last="Harris">Robert N. Harris</name>
<affiliation>
<mods:affiliation>College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, Cynthia A" sort="Werner, Cynthia A" uniqKey="Werner C" first="Cynthia A." last="Werner">Cynthia A. Werner</name>
<affiliation>
<mods:affiliation>Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, Alaska, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murphy, Fred" sort="Murphy, Fred" uniqKey="Murphy F" first="Fred" last="Murphy">Fred Murphy</name>
<affiliation>
<mods:affiliation>U.S. Geological Survey, Menlo Park, California, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">B10</biblScope>
<biblScope unit="page-count">18</biblScope>
<date type="published" when="2012-10">2012-10</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Advective</term>
<term>Advective heat flux</term>
<term>Advective heat output</term>
<term>Aerial photos</term>
<term>Auxiliary material</term>
<term>Average heat flux</term>
<term>Bottom hole temperatures</term>
<term>Brantley</term>
<term>Bromley</term>
<term>Caldera</term>
<term>Chiodini</term>
<term>Chloride flux</term>
<term>Chloride inventory method</term>
<term>Conductive</term>
<term>Conductive heat flux</term>
<term>Conductive heat output</term>
<term>Conductivity</term>
<term>Core samples</term>
<term>Desiccant</term>
<term>Desiccant container</term>
<term>Diffusivity</term>
<term>Diurnal temperature variations</term>
<term>Fournier</term>
<term>Fumaroles</term>
<term>Future studies</term>
<term>Geol</term>
<term>Geological survey</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Ground surface</term>
<term>Heasler</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Heat flux estimates</term>
<term>Heat output</term>
<term>Heat output estimates</term>
<term>Heat transport</term>
<term>High concentrations</term>
<term>High heat flux</term>
<term>Hochstein</term>
<term>Hurwitz</term>
<term>Hydrothermal</term>
<term>Jaworowski</term>
<term>July</term>
<term>June</term>
<term>Liquid water</term>
<term>Lowenstern</term>
<term>Magmatic</term>
<term>Magmatic system</term>
<term>Menlo park</term>
<term>Obsidian</term>
<term>Obsidian pool</term>
<term>Opta</term>
<term>Overnight experiments</term>
<term>Parent fluid</term>
<term>Permeability</term>
<term>Permeability layer</term>
<term>Pitt</term>
<term>Plateau</term>
<term>Pure water</term>
<term>Qcond</term>
<term>Solfatara</term>
<term>Solfatara plateau</term>
<term>Solfatara volcano</term>
<term>Spring basin</term>
<term>Spta</term>
<term>Standard deviation</term>
<term>Subsurface</term>
<term>Temperature gradient</term>
<term>Temperature gradients</term>
<term>Temperature measurements</term>
<term>Temperature variations</term>
<term>Temperaturedepth measurements</term>
<term>Thermal activity</term>
<term>Thermal area</term>
<term>Thermal areas</term>
<term>Thermal budget</term>
<term>Thermal conductivity</term>
<term>Thermal diffusivity</term>
<term>Thermal features</term>
<term>Thermal pools</term>
<term>Thermal structure</term>
<term>Total heat output</term>
<term>Vapor</term>
<term>Vapor temperature</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water saturation</term>
<term>Water surface</term>
<term>Water vapor</term>
<term>Weather station</term>
<term>Wind speed</term>
<term>Yellowstone</term>
<term>Yellowstone caldera</term>
<term>Yellowstone lake</term>
<term>Yellowstone plateau</term>
<term>Ypvf</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Advective</term>
<term>Advective heat flux</term>
<term>Advective heat output</term>
<term>Aerial photos</term>
<term>Auxiliary material</term>
<term>Average heat flux</term>
<term>Bottom hole temperatures</term>
<term>Brantley</term>
<term>Bromley</term>
<term>Caldera</term>
<term>Chiodini</term>
<term>Chloride flux</term>
<term>Chloride inventory method</term>
<term>Conductive</term>
<term>Conductive heat flux</term>
<term>Conductive heat output</term>
<term>Conductivity</term>
<term>Core samples</term>
<term>Desiccant</term>
<term>Desiccant container</term>
<term>Diffusivity</term>
<term>Diurnal temperature variations</term>
<term>Fournier</term>
<term>Fumaroles</term>
<term>Future studies</term>
<term>Geol</term>
<term>Geological survey</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Ground surface</term>
<term>Heasler</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Heat flux estimates</term>
<term>Heat output</term>
<term>Heat output estimates</term>
<term>Heat transport</term>
<term>High concentrations</term>
<term>High heat flux</term>
<term>Hochstein</term>
<term>Hurwitz</term>
<term>Hydrothermal</term>
<term>Jaworowski</term>
<term>July</term>
<term>June</term>
<term>Liquid water</term>
<term>Lowenstern</term>
<term>Magmatic</term>
<term>Magmatic system</term>
<term>Menlo park</term>
<term>Obsidian</term>
<term>Obsidian pool</term>
<term>Opta</term>
<term>Overnight experiments</term>
<term>Parent fluid</term>
<term>Permeability</term>
<term>Permeability layer</term>
<term>Pitt</term>
<term>Plateau</term>
<term>Pure water</term>
<term>Qcond</term>
<term>Solfatara</term>
<term>Solfatara plateau</term>
<term>Solfatara volcano</term>
<term>Spring basin</term>
<term>Spta</term>
<term>Standard deviation</term>
<term>Subsurface</term>
<term>Temperature gradient</term>
<term>Temperature gradients</term>
<term>Temperature measurements</term>
<term>Temperature variations</term>
<term>Temperaturedepth measurements</term>
<term>Thermal activity</term>
<term>Thermal area</term>
<term>Thermal areas</term>
<term>Thermal budget</term>
<term>Thermal conductivity</term>
<term>Thermal diffusivity</term>
<term>Thermal features</term>
<term>Thermal pools</term>
<term>Thermal structure</term>
<term>Total heat output</term>
<term>Vapor</term>
<term>Vapor temperature</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water saturation</term>
<term>Water surface</term>
<term>Water vapor</term>
<term>Weather station</term>
<term>Wind speed</term>
<term>Yellowstone</term>
<term>Yellowstone caldera</term>
<term>Yellowstone lake</term>
<term>Yellowstone plateau</term>
<term>Ypvf</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid‐sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ∼35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).</div>
<div type="abstract">Conductive, advective, and evaporative heat outputs were quantified Heat output from Yellowstone ranges from 4.9 GW to 9.1 GW Water vapor transports 4.0 to 8.0 GW of heat</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>yellowstone</json:string>
<json:string>opta</json:string>
<json:string>spta</json:string>
<json:string>caldera</json:string>
<json:string>yellowstone caldera</json:string>
<json:string>hurwitz</json:string>
<json:string>heat flow</json:string>
<json:string>conductive</json:string>
<json:string>thermal areas</json:string>
<json:string>ypvf</json:string>
<json:string>heat flux</json:string>
<json:string>solfatara</json:string>
<json:string>hydrothermal</json:string>
<json:string>desiccant</json:string>
<json:string>geophys</json:string>
<json:string>ground surface</json:string>
<json:string>advective</json:string>
<json:string>temperature gradients</json:string>
<json:string>lowenstern</json:string>
<json:string>obsidian pool</json:string>
<json:string>heat output</json:string>
<json:string>solfatara plateau</json:string>
<json:string>total heat output</json:string>
<json:string>june</json:string>
<json:string>magmatic</json:string>
<json:string>thermal pools</json:string>
<json:string>heasler</json:string>
<json:string>geol</json:string>
<json:string>fournier</json:string>
<json:string>volcanol</json:string>
<json:string>thermal area</json:string>
<json:string>geotherm</json:string>
<json:string>temperature gradient</json:string>
<json:string>fumaroles</json:string>
<json:string>brantley</json:string>
<json:string>chiodini</json:string>
<json:string>heat transport</json:string>
<json:string>geothermal</json:string>
<json:string>hochstein</json:string>
<json:string>average heat flux</json:string>
<json:string>permeability</json:string>
<json:string>thermal features</json:string>
<json:string>bottom hole temperatures</json:string>
<json:string>july</json:string>
<json:string>qcond</json:string>
<json:string>diffusivity</json:string>
<json:string>yellowstone plateau</json:string>
<json:string>jaworowski</json:string>
<json:string>obsidian</json:string>
<json:string>yellowstone lake</json:string>
<json:string>magmatic system</json:string>
<json:string>thermal conductivity</json:string>
<json:string>pure water</json:string>
<json:string>thermal diffusivity</json:string>
<json:string>conductive heat output</json:string>
<json:string>overnight experiments</json:string>
<json:string>conductive heat flux</json:string>
<json:string>thermal activity</json:string>
<json:string>bromley</json:string>
<json:string>advective heat flux</json:string>
<json:string>geological survey</json:string>
<json:string>parent fluid</json:string>
<json:string>permeability layer</json:string>
<json:string>future studies</json:string>
<json:string>water saturation</json:string>
<json:string>auxiliary material</json:string>
<json:string>wind speed</json:string>
<json:string>heat flux estimates</json:string>
<json:string>aerial photos</json:string>
<json:string>water vapor</json:string>
<json:string>temperature measurements</json:string>
<json:string>high heat flux</json:string>
<json:string>core samples</json:string>
<json:string>vapor temperature</json:string>
<json:string>chloride inventory method</json:string>
<json:string>subsurface</json:string>
<json:string>plateau</json:string>
<json:string>volcano</json:string>
<json:string>heat output estimates</json:string>
<json:string>menlo park</json:string>
<json:string>liquid water</json:string>
<json:string>chloride flux</json:string>
<json:string>temperature variations</json:string>
<json:string>standard deviation</json:string>
<json:string>weather station</json:string>
<json:string>spring basin</json:string>
<json:string>high concentrations</json:string>
<json:string>advective heat output</json:string>
<json:string>temperaturedepth measurements</json:string>
<json:string>desiccant container</json:string>
<json:string>solfatara volcano</json:string>
<json:string>water surface</json:string>
<json:string>diurnal temperature variations</json:string>
<json:string>thermal structure</json:string>
<json:string>thermal budget</json:string>
<json:string>vapor</json:string>
<json:string>conductivity</json:string>
<json:string>pitt</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Shaul Hurwitz</name>
<affiliations>
<json:string>U.S. Geological Survey, Menlo Park, California, USA</json:string>
<json:string>E-mail: shaulh@usgs.gov</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert N. Harris</name>
<affiliations>
<json:string>College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Cynthia A. Werner</name>
<affiliations>
<json:string>Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, Alaska, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fred Murphy</name>
<affiliations>
<json:string>U.S. Geological Survey, Menlo Park, California, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Yellowstone</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>heat flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>heat flux</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>heat transport</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hydrothermal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>magmatic</value>
</json:item>
</subject>
<articleId>
<json:string>2012JB009463</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<qualityIndicators>
<score>9.5</score>
<pdfVersion>1.6</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1503</abstractCharCount>
<pdfWordCount>10980</pdfWordCount>
<pdfCharCount>66298</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>251</abstractWordCount>
</qualityIndicators>
<title>Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>117</volume>
<issue>B10</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>18</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
<json:item>
<value>GEOCHEMISTRY</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>MARINE GEOLOGY AND GEOPHYSICS</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>MINERALOGY AND PETROLOGY</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Heat generation and transport</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>VOLCANOLOGY</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Calderas</value>
</json:item>
<json:item>
<value>Instruments and techniques</value>
</json:item>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1029/2012JB009463</json:string>
</doi>
<id>8877F6C700ADD276962A1D7F861F95535BEC8023</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/8877F6C700ADD276962A1D7F861F95535BEC8023/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/8877F6C700ADD276962A1D7F861F95535BEC8023/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/8877F6C700ADD276962A1D7F861F95535BEC8023/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<licence>©2012. American Geophysical Union. All Rights Reserved.</licence>
</availability>
<date type="published" when="2012-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
<title level="a" type="short">HEAT FLOW IN THE YELLOWSTONE CALDERA</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Shaul</forename>
<surname>Hurwitz</surname>
</persName>
<email>shaulh@usgs.gov</email>
<affiliation>U.S. Geological Survey, Menlo Park, California, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Corresponding author: S. Hurwitz, U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025, USA. (shaulh@usgs.gov)</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Robert N.</forename>
<surname>Harris</surname>
</persName>
<affiliation>College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Cynthia A.</forename>
<surname>Werner</surname>
</persName>
<affiliation>Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, Alaska, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Fred</forename>
<surname>Murphy</surname>
</persName>
<affiliation>U.S. Geological Survey, Menlo Park, California, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<idno type="istex">8877F6C700ADD276962A1D7F861F95535BEC8023</idno>
<idno type="DOI">10.1029/2012JB009463</idno>
<idno type="editorialOffice">2012JB009463</idno>
<idno type="society">B10207</idno>
<idno type="unit">JGRB17318</idno>
<idno type="toTypesetVersion">file:JGRB.JGRB17318.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202b</idno>
<idno type="book-part-DOI">10.1002/jgrb.v117.B10</idno>
<idno type="product">JGRB</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">B10</biblScope>
<biblScope unit="page-count">18</biblScope>
<date type="published" when="2012-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrb17318-para-0004">Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid‐sulfate thermal areas in the Yellowstone Caldera, the 0.11 km
<hi rend="superscript">2</hi>
Obsidian Pool Thermal Area (OPTA) and the 0.25 km
<hi rend="superscript">2</hi>
Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m
<hi rend="superscript">−2</hi>
) and SPTA (35 ± 3 W·m
<hi rend="superscript">−2</hi>
) to the ∼35 km
<hi rend="superscript">2</hi>
of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).</p>
</abstract>
<abstract style="short">
<head>Key Points</head>
<p xml:id="jgrb17318-para-0005">
<list style="bulleted">
<item>Conductive, advective, and evaporative heat outputs were quantified</item>
<item>Heat output from Yellowstone ranges from 4.9 GW to 9.1 GW</item>
<item>Water vapor transports 4.0 to 8.0 GW of heat</item>
</list>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrb17318-kwd-0001">Yellowstone</term>
<term xml:id="jgrb17318-kwd-0002">heat flow</term>
<term xml:id="jgrb17318-kwd-0003">heat flux</term>
<term xml:id="jgrb17318-kwd-0004">heat transport</term>
<term xml:id="jgrb17318-kwd-0005">hydrothermal</term>
<term xml:id="jgrb17318-kwd-0006">magmatic</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</classCode>
<classCode scheme="articleCategory">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
<classCode scheme="tocHeading1">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/8877F6C700ADD276962A1D7F861F95535BEC8023/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb17318">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="100">
<doi>10.1002/jgrb.v117.B10</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="117">117</numbering>
<numbering type="journalIssue">B10</numbering>
</numberingGroup>
<coverDate startDate="2012-10">October 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="20" status="forIssue">
<doi>10.1029/2012JB009463</doi>
<idGroup>
<id type="editorialOffice" value="2012JB009463"></id>
<id type="society" value="B10207"></id>
<id type="unit" value="JGRB17318"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
<title type="tocHeading1">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
</titleGroup>
<copyright ownership="thirdParty">©2012. American Geophysical Union. All Rights Reserved.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-05-22"></event>
<event type="manuscriptRevised" date="2012-08-17"></event>
<event type="manuscriptAccepted" date="2012-08-23"></event>
<event type="firstOnline" date="2012-10-13"></event>
<event type="publishedOnlineFinalForm" date="2012-10-13"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv5.2_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0" date="2013-03-07"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.3.5 mode:FullText" date="2014-11-21"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<correspondenceTo>Corresponding author: S. Hurwitz, U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025, USA. (
<email>shaulh@usgs.gov</email>
)</correspondenceTo>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0450">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0766">Thermodynamics</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1011">Thermodynamics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1034">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3017">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3611">Thermodynamics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3616">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4832">Hydrothermal systems</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8130">Heat generation and transport</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8135">Hydrothermal systems</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8411">Thermodynamics</subject>
<subject href="http://psi.agu.org/taxonomy5/8424">Hydrothermal systems</subject>
<subject href="http://psi.agu.org/taxonomy5/8440">Calderas</subject>
<subject href="http://psi.agu.org/taxonomy5/8494">Instruments and techniques</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb17318-cit-0000" type="self">
<author>
<familyName>Hurwitz</familyName>
,
<givenNames>S.</givenNames>
</author>
,
<author>
<givenNames>R. N.</givenNames>
<familyName>Harris</familyName>
</author>
,
<author>
<givenNames>C. A.</givenNames>
<familyName>Werner</familyName>
</author>
, and
<author>
<givenNames>F.</givenNames>
<familyName>Murphy</familyName>
</author>
(
<pubYear year="2012">2012</pubYear>
),
<articleTitle>Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>117</vol>
, B10207, doi:
<accessionId ref="info:doi/10.1029/2012JB009463">10.1029/2012JB009463</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB17318.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="12100"></count>
<count type="figureTotal" number="13"></count>
<count type="tableTotal" number="3"></count>
</countGroup>
<titleGroup>
<title type="main">Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
<title type="shortAuthors">HURWITZ ET AL.</title>
<title type="short">HEAT FLOW IN THE YELLOWSTONE CALDERA</title>
</titleGroup>
<creators>
<creator xml:id="jgrb17318-cr-0001" creatorRole="author" affiliationRef="#jgrb17318-aff-0001" corresponding="yes">
<personName>
<givenNames>Shaul</givenNames>
<familyName>Hurwitz</familyName>
</personName>
<contactDetails>
<email>shaulh@usgs.gov</email>
</contactDetails>
</creator>
<creator xml:id="jgrb17318-cr-0002" creatorRole="author" affiliationRef="#jgrb17318-aff-0002">
<personName>
<givenNames>Robert N.</givenNames>
<familyName>Harris</familyName>
</personName>
</creator>
<creator xml:id="jgrb17318-cr-0003" creatorRole="author" affiliationRef="#jgrb17318-aff-0003">
<personName>
<givenNames>Cynthia A.</givenNames>
<familyName>Werner</familyName>
</personName>
</creator>
<creator xml:id="jgrb17318-cr-0004" creatorRole="author" affiliationRef="#jgrb17318-aff-0001">
<personName>
<givenNames>Fred</givenNames>
<familyName>Murphy</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="jgrb17318-aff-0001" countryCode="US" type="organization">
<unparsedAffiliation>U.S. Geological Survey, Menlo Park, California, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrb17318-aff-0002" countryCode="US" type="organization">
<unparsedAffiliation>College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrb17318-aff-0003" countryCode="US" type="organization">
<unparsedAffiliation>Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, Alaska, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb17318-kwd-0001">Yellowstone</keyword>
<keyword xml:id="jgrb17318-kwd-0002">heat flow</keyword>
<keyword xml:id="jgrb17318-kwd-0003">heat flux</keyword>
<keyword xml:id="jgrb17318-kwd-0004">heat transport</keyword>
<keyword xml:id="jgrb17318-kwd-0005">hydrothermal</keyword>
<keyword xml:id="jgrb17318-kwd-0006">magmatic</keyword>
</keywordGroup>
<supportingInformation xml:id="jgrb17318-sup-0000">
<p xml:id="jgrb17318-para-0001">Auxiliary material for this article contains one photo showing thermal pools in the Obsidian Pool Thermal Area as well as four tables showing locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation for the Obsidian Pool Thermal Area and the Solfatara Plateau Thermal Area and matrix thermal conductivity, porosity, and water saturation of Obsidian Pool Thermal Area soil samples.</p>
<p xml:id="jgrb17318-para-0002">Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac).</p>
<p xml:id="jgrb17318-para-0003">Additional file information is provided in the readme.txt.</p>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0001-readme"></mediaResource>
<caption>readme.txt</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/pdf" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0002-fs01"></mediaResource>
<caption>Figure S1. Photos of thermal pools in the Obsidian Pool Thermal Area as labeled in
<link href="#jgrb17318-tbl-0001">Table 1</link>
.</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="jgrb17318-sup-0001">
<mediaResource alt="supplementary data" mimeType="text/csv" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0003-ts01"></mediaResource>
<caption>Table S1. The locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation at the Obsidian Pool Thermal Area.</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="jgrb17318-sup-0002">
<mediaResource alt="supplementary data" mimeType="text/csv" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0004-ts02"></mediaResource>
<caption>Table S2. The locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation at the Solfatara Plateau Thermal Area.</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="jgrb17318-sup-0003">
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0005-ts03"></mediaResource>
<caption>Table S3. Matrix thermal conductivity of soil samples obtained from the Obsidian Pool Thermal Area.</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="jgrb17318-sup-0004">
<mediaResource alt="supplementary data" mimeType="application/pdf" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0006-ts04"></mediaResource>
<caption>Table S4. Porosity and water saturation of soil samples obtained from the Obsidian Pool Thermal Area.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0007-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0008-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb17318:jgrb17318-sup-0009-t03"></mediaResource>
<caption>Tab‐delimited Table 3.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb17318-para-0004" label="1">Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid‐sulfate thermal areas in the Yellowstone Caldera, the 0.11 km
<sup>2</sup>
Obsidian Pool Thermal Area (OPTA) and the 0.25 km
<sup>2</sup>
Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m
<sup>−2</sup>
) and SPTA (35 ± 3 W·m
<sup>−2</sup>
) to the ∼35 km
<sup>2</sup>
of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="jgrb17318-para-0005">
<list style="bulleted">
<listItem>Conductive, advective, and evaporative heat outputs were quantified</listItem>
<listItem>Heat output from Yellowstone ranges from 4.9 GW to 9.1 GW</listItem>
<listItem>Water vapor transports 4.0 to 8.0 GW of heat</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>HEAT FLOW IN THE YELLOWSTONE CALDERA</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shaul</namePart>
<namePart type="family">Hurwitz</namePart>
<affiliation>U.S. Geological Survey, Menlo Park, California, USA</affiliation>
<affiliation>E-mail: shaulh@usgs.gov</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert N.</namePart>
<namePart type="family">Harris</namePart>
<affiliation>College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia A.</namePart>
<namePart type="family">Werner</namePart>
<affiliation>Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, Alaska, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred</namePart>
<namePart type="family">Murphy</namePart>
<affiliation>U.S. Geological Survey, Menlo Park, California, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2012-10</dateIssued>
<dateCaptured encoding="w3cdtf">2012-05-22</dateCaptured>
<dateValid encoding="w3cdtf">2012-08-23</dateValid>
<edition>Hurwitz, S., R. N. Harris, C. A. Werner, and F. Murphy (2012), Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera, J. Geophys. Res., 117, B10207, doi:10.1029/2012JB009463.</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">13</extent>
<extent unit="tables">3</extent>
<extent unit="words">12100</extent>
</physicalDescription>
<abstract>Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid‐sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ∼35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).</abstract>
<abstract type="short">Conductive, advective, and evaporative heat outputs were quantified Heat output from Yellowstone ranges from 4.9 GW to 9.1 GW Water vapor transports 4.0 to 8.0 GW of heat</abstract>
<subject>
<genre>keywords</genre>
<topic>Yellowstone</topic>
<topic>heat flow</topic>
<topic>heat flux</topic>
<topic>heat transport</topic>
<topic>hydrothermal</topic>
<topic>magmatic</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Auxiliary material for this article contains one photo showing thermal pools in the Obsidian Pool Thermal Area as well as four tables showing locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation for the Obsidian Pool Thermal Area and the Solfatara Plateau Thermal Area and matrix thermal conductivity, porosity, and water saturation of Obsidian Pool Thermal Area soil samples. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt. Auxiliary material for this article contains one photo showing thermal pools in the Obsidian Pool Thermal Area as well as four tables showing locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation for the Obsidian Pool Thermal Area and the Solfatara Plateau Thermal Area and matrix thermal conductivity, porosity, and water saturation of Obsidian Pool Thermal Area soil samples. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt. Auxiliary material for this article contains one photo showing thermal pools in the Obsidian Pool Thermal Area as well as four tables showing locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation for the Obsidian Pool Thermal Area and the Solfatara Plateau Thermal Area and matrix thermal conductivity, porosity, and water saturation of Obsidian Pool Thermal Area soil samples. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). Additional file information is provided in the readme.txt.Supporting Info Item: readme.txt - Figure S1. Photos of thermal pools in the Obsidian Pool Thermal Area as labeled in . - Table S1. The locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation at the Obsidian Pool Thermal Area. - Table S2. The locations of temperature‐depth measurements, depth of each of the 16 temperature sensors, calculated temperature gradient and standard deviation, and the extrapolated surface temperature and standard deviation at the Solfatara Plateau Thermal Area. - Table S3. Matrix thermal conductivity of soil samples obtained from the Obsidian Pool Thermal Area. - Table S4. Porosity and water saturation of soil samples obtained from the Obsidian Pool Thermal Area. - Tab‐delimited Table 1. - Tab‐delimited Table 2. - Tab‐delimited Table 3. - </note>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0450">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0766">Thermodynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1011">Thermodynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1034">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3017">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3611">Thermodynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3616">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4832">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8130">Heat generation and transport</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8135">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8411">Thermodynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8424">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8440">Calderas</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8494">Instruments and techniques</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B10</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">8877F6C700ADD276962A1D7F861F95535BEC8023</identifier>
<identifier type="DOI">10.1029/2012JB009463</identifier>
<identifier type="ArticleID">2012JB009463</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2012. American Geophysical Union. All Rights Reserved.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/8877F6C700ADD276962A1D7F861F95535BEC8023/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000396 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000396 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8877F6C700ADD276962A1D7F861F95535BEC8023
   |texte=   Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021