Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea

Identifieur interne : 000375 ( Istex/Corpus ); précédent : 000374; suivant : 000376

Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea

Auteurs : Thomas Pichler ; Jan Veizer

Source :

RBID : ISTEX:6CC0B97E2577B29A628CDDB1A22B718ED355A7BC

English descriptors

Abstract

Abstract: Previous research on sea floor Fe(III) oxyhydroxide deposits has focused primarily on deep-sea, hydrothermal systems found along volcanically active portions of the mid-ocean ridges and on hydrogenetic deposits formed in deep basins and along continental shelves. There is, however, not much known about their formation in shallow-water settings associated with volcanic islands. The hydrothermal system at Ambitle Island, Papua New Guinea provides an excellent opportunity to study the formation of Fe(III) oxyhydroxides in a shallow-water setting. Precipitation from the hydrothermal solution is caused by mixing with seawater. Based on a 87Sr/86Sr mixing model, the calculated minimum and maximum seawater fractions are approximately 11 and 57%, respectively. Thus, precipitation of Tutum Bay Fe(III) oxyhydroxides takes place at a temperature range between approximately 60 and 93°C. The chemical composition shows low Mn contents (Fe/Mn>600), and elements that are usually enriched in Fe(III) oxyhydroxides, such as Co and V are below crustal abundance and well below their concentrations in island-arc volcanics. Arsenic concentrations, on the other hand, are by two orders of magnitude higher than those in other marine deposits. Rare earth element (REE) concentrations reflect their concentration in the hydrothermal fluids rather than seawater. The crystallinity of the deposits increases with age, as protoferrihydrite is apparently altered to Fe-smectite and hematite, and As-bearing minerals are formed. Contact with seawater, and therefore oxidizing conditions, seems to be the factor increasing the crystallinity.

Url:
DOI: 10.1016/S0009-2541(99)00068-6

Links to Exploration step

ISTEX:6CC0B97E2577B29A628CDDB1A22B718ED355A7BC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</title>
<author>
<name sortKey="Pichler, Thomas" sort="Pichler, Thomas" uniqKey="Pichler T" first="Thomas" last="Pichler">Thomas Pichler</name>
<affiliation>
<mods:affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Veizer, Jan" sort="Veizer, Jan" uniqKey="Veizer J" first="Jan" last="Veizer">Jan Veizer</name>
<affiliation>
<mods:affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6CC0B97E2577B29A628CDDB1A22B718ED355A7BC</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0009-2541(99)00068-6</idno>
<idno type="url">https://api.istex.fr/document/6CC0B97E2577B29A628CDDB1A22B718ED355A7BC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000375</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000375</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</title>
<author>
<name sortKey="Pichler, Thomas" sort="Pichler, Thomas" uniqKey="Pichler T" first="Thomas" last="Pichler">Thomas Pichler</name>
<affiliation>
<mods:affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Veizer, Jan" sort="Veizer, Jan" uniqKey="Veizer J" first="Jan" last="Veizer">Jan Veizer</name>
<affiliation>
<mods:affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemical Geology</title>
<title level="j" type="abbrev">CHEMGE</title>
<idno type="ISSN">0009-2541</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">162</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="15">15</biblScope>
<biblScope unit="page" to="31">31</biblScope>
</imprint>
<idno type="ISSN">0009-2541</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0009-2541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acta</term>
<term>Adsorption</term>
<term>Ambient seawater</term>
<term>Ambitle</term>
<term>Ambitle island</term>
<term>Amorphous nature</term>
<term>Arsenic</term>
<term>Arsenic concentrations</term>
<term>Broad humps</term>
<term>Chao</term>
<term>Chemical composition</term>
<term>Chukhrov</term>
<term>Cosmochimica</term>
<term>Cosmochimica acta</term>
<term>Crystallinity</term>
<term>Deposit</term>
<term>Economic geology</term>
<term>Environmental science</term>
<term>Fe(III) oxyhydroxide</term>
<term>Feni islands</term>
<term>Geochemical exploration</term>
<term>Geochemistry</term>
<term>Geochimica</term>
<term>Geology</term>
<term>Goethite</term>
<term>Good agreement</term>
<term>Hematite</term>
<term>Hydrothermal</term>
<term>Hydrothermal deposits</term>
<term>Hydrothermal fluid</term>
<term>Hydrothermal fluids</term>
<term>Hydrothermal system</term>
<term>Hydrous iron oxides</term>
<term>Loihi seamount</term>
<term>Marine geology</term>
<term>Massive layers</term>
<term>Mcmurtry</term>
<term>Metal deposits</term>
<term>Nontronite</term>
<term>Orifice</term>
<term>Other hand</term>
<term>Outer layer</term>
<term>Oxide</term>
<term>Oxidizing conditions</term>
<term>Oxyhydroxide</term>
<term>Oxyhydroxide deposits</term>
<term>Oxyhydroxide precipitation</term>
<term>Oxyhydroxides</term>
<term>Papua</term>
<term>Papua New Guinea</term>
<term>Pichler</term>
<term>Precipitation</term>
<term>Protoferrihydrite</term>
<term>Proton probe</term>
<term>Puteanus</term>
<term>Rapid precipitation</term>
<term>Rare earth elements</term>
<term>Schwertmann</term>
<term>Science letters</term>
<term>Seamount</term>
<term>Seawater</term>
<term>Shallow water</term>
<term>Stoffers</term>
<term>Sulfide</term>
<term>Theobald</term>
<term>Tutum</term>
<term>Veizerr</term>
<term>Veizerr chemical geology</term>
<term>Vent fluid</term>
<term>Vent fluids</term>
<term>Vent orifice</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta</term>
<term>Adsorption</term>
<term>Ambient seawater</term>
<term>Ambitle</term>
<term>Ambitle island</term>
<term>Amorphous nature</term>
<term>Arsenic</term>
<term>Arsenic concentrations</term>
<term>Broad humps</term>
<term>Chao</term>
<term>Chemical composition</term>
<term>Chukhrov</term>
<term>Cosmochimica</term>
<term>Cosmochimica acta</term>
<term>Crystallinity</term>
<term>Deposit</term>
<term>Economic geology</term>
<term>Environmental science</term>
<term>Feni islands</term>
<term>Geochemical exploration</term>
<term>Geochemistry</term>
<term>Geochimica</term>
<term>Geology</term>
<term>Goethite</term>
<term>Good agreement</term>
<term>Hematite</term>
<term>Hydrothermal</term>
<term>Hydrothermal deposits</term>
<term>Hydrothermal fluid</term>
<term>Hydrothermal fluids</term>
<term>Hydrothermal system</term>
<term>Hydrous iron oxides</term>
<term>Loihi seamount</term>
<term>Marine geology</term>
<term>Massive layers</term>
<term>Mcmurtry</term>
<term>Metal deposits</term>
<term>Nontronite</term>
<term>Orifice</term>
<term>Other hand</term>
<term>Outer layer</term>
<term>Oxide</term>
<term>Oxidizing conditions</term>
<term>Oxyhydroxide</term>
<term>Oxyhydroxide deposits</term>
<term>Oxyhydroxide precipitation</term>
<term>Oxyhydroxides</term>
<term>Papua</term>
<term>Pichler</term>
<term>Precipitation</term>
<term>Protoferrihydrite</term>
<term>Proton probe</term>
<term>Puteanus</term>
<term>Rapid precipitation</term>
<term>Rare earth elements</term>
<term>Schwertmann</term>
<term>Science letters</term>
<term>Seamount</term>
<term>Seawater</term>
<term>Stoffers</term>
<term>Sulfide</term>
<term>Theobald</term>
<term>Tutum</term>
<term>Veizerr</term>
<term>Veizerr chemical geology</term>
<term>Vent fluid</term>
<term>Vent fluids</term>
<term>Vent orifice</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Previous research on sea floor Fe(III) oxyhydroxide deposits has focused primarily on deep-sea, hydrothermal systems found along volcanically active portions of the mid-ocean ridges and on hydrogenetic deposits formed in deep basins and along continental shelves. There is, however, not much known about their formation in shallow-water settings associated with volcanic islands. The hydrothermal system at Ambitle Island, Papua New Guinea provides an excellent opportunity to study the formation of Fe(III) oxyhydroxides in a shallow-water setting. Precipitation from the hydrothermal solution is caused by mixing with seawater. Based on a 87Sr/86Sr mixing model, the calculated minimum and maximum seawater fractions are approximately 11 and 57%, respectively. Thus, precipitation of Tutum Bay Fe(III) oxyhydroxides takes place at a temperature range between approximately 60 and 93°C. The chemical composition shows low Mn contents (Fe/Mn>600), and elements that are usually enriched in Fe(III) oxyhydroxides, such as Co and V are below crustal abundance and well below their concentrations in island-arc volcanics. Arsenic concentrations, on the other hand, are by two orders of magnitude higher than those in other marine deposits. Rare earth element (REE) concentrations reflect their concentration in the hydrothermal fluids rather than seawater. The crystallinity of the deposits increases with age, as protoferrihydrite is apparently altered to Fe-smectite and hematite, and As-bearing minerals are formed. Contact with seawater, and therefore oxidizing conditions, seems to be the factor increasing the crystallinity.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>hydrothermal</json:string>
<json:string>seawater</json:string>
<json:string>oxyhydroxide</json:string>
<json:string>tutum</json:string>
<json:string>precipitation</json:string>
<json:string>pichler</json:string>
<json:string>hydrothermal fluid</json:string>
<json:string>oxyhydroxides</json:string>
<json:string>protoferrihydrite</json:string>
<json:string>oxyhydroxide deposits</json:string>
<json:string>veizerr chemical geology</json:string>
<json:string>veizerr</json:string>
<json:string>nontronite</json:string>
<json:string>ambitle</json:string>
<json:string>ambitle island</json:string>
<json:string>seamount</json:string>
<json:string>papua</json:string>
<json:string>puteanus</json:string>
<json:string>stoffers</json:string>
<json:string>arsenic</json:string>
<json:string>adsorption</json:string>
<json:string>hematite</json:string>
<json:string>goethite</json:string>
<json:string>crystallinity</json:string>
<json:string>cosmochimica acta</json:string>
<json:string>geochimica</json:string>
<json:string>cosmochimica</json:string>
<json:string>chao</json:string>
<json:string>theobald</json:string>
<json:string>acta</json:string>
<json:string>hydrothermal system</json:string>
<json:string>orifice</json:string>
<json:string>mcmurtry</json:string>
<json:string>schwertmann</json:string>
<json:string>hydrothermal fluids</json:string>
<json:string>chukhrov</json:string>
<json:string>vent fluids</json:string>
<json:string>good agreement</json:string>
<json:string>amorphous nature</json:string>
<json:string>economic geology</json:string>
<json:string>chemical composition</json:string>
<json:string>sulfide</json:string>
<json:string>vent fluid</json:string>
<json:string>rapid precipitation</json:string>
<json:string>rare earth elements</json:string>
<json:string>geochemistry</json:string>
<json:string>geology</json:string>
<json:string>deposit</json:string>
<json:string>geochemical exploration</json:string>
<json:string>proton probe</json:string>
<json:string>other hand</json:string>
<json:string>loihi seamount</json:string>
<json:string>massive layers</json:string>
<json:string>oxidizing conditions</json:string>
<json:string>vent orifice</json:string>
<json:string>oxyhydroxide precipitation</json:string>
<json:string>ambient seawater</json:string>
<json:string>marine geology</json:string>
<json:string>metal deposits</json:string>
<json:string>feni islands</json:string>
<json:string>environmental science</json:string>
<json:string>hydrothermal deposits</json:string>
<json:string>science letters</json:string>
<json:string>broad humps</json:string>
<json:string>arsenic concentrations</json:string>
<json:string>hydrous iron oxides</json:string>
<json:string>outer layer</json:string>
<json:string>oxide</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Thomas Pichler</name>
<affiliations>
<json:string>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jan Veizer</name>
<affiliations>
<json:string>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fe(III) oxyhydroxide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hydrothermal system</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Shallow water</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Arsenic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Papua New Guinea</value>
</json:item>
</subject>
<articleId>
<json:string>13371</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Previous research on sea floor Fe(III) oxyhydroxide deposits has focused primarily on deep-sea, hydrothermal systems found along volcanically active portions of the mid-ocean ridges and on hydrogenetic deposits formed in deep basins and along continental shelves. There is, however, not much known about their formation in shallow-water settings associated with volcanic islands. The hydrothermal system at Ambitle Island, Papua New Guinea provides an excellent opportunity to study the formation of Fe(III) oxyhydroxides in a shallow-water setting. Precipitation from the hydrothermal solution is caused by mixing with seawater. Based on a 87Sr/86Sr mixing model, the calculated minimum and maximum seawater fractions are approximately 11 and 57%, respectively. Thus, precipitation of Tutum Bay Fe(III) oxyhydroxides takes place at a temperature range between approximately 60 and 93°C. The chemical composition shows low Mn contents (Fe/Mn>600), and elements that are usually enriched in Fe(III) oxyhydroxides, such as Co and V are below crustal abundance and well below their concentrations in island-arc volcanics. Arsenic concentrations, on the other hand, are by two orders of magnitude higher than those in other marine deposits. Rare earth element (REE) concentrations reflect their concentration in the hydrothermal fluids rather than seawater. The crystallinity of the deposits increases with age, as protoferrihydrite is apparently altered to Fe-smectite and hematite, and As-bearing minerals are formed. Contact with seawater, and therefore oxidizing conditions, seems to be the factor increasing the crystallinity.</abstract>
<qualityIndicators>
<score>7.748</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>540 x 712 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1627</abstractCharCount>
<pdfWordCount>7665</pdfWordCount>
<pdfCharCount>49692</pdfCharCount>
<pdfPageCount>17</pdfPageCount>
<abstractWordCount>229</abstractWordCount>
</qualityIndicators>
<title>Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</title>
<pii>
<json:string>S0009-2541(99)00068-6</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Chemical Geology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1999</publicationDate>
<issn>
<json:string>0009-2541</json:string>
</issn>
<pii>
<json:string>S0009-2541(00)X0074-5</json:string>
</pii>
<volume>162</volume>
<issue>1</issue>
<pages>
<first>15</first>
<last>31</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>geophysique externe</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0009-2541(99)00068-6</json:string>
</doi>
<id>6CC0B97E2577B29A628CDDB1A22B718ED355A7BC</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/6CC0B97E2577B29A628CDDB1A22B718ED355A7BC/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/6CC0B97E2577B29A628CDDB1A22B718ED355A7BC/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/6CC0B97E2577B29A628CDDB1A22B718ED355A7BC/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Location of Ambitle Island, one of the Feni islands in eastern Papua New Guinea (modified after Licence et al., 1987 and Pichler and Dix, 1996). Geothermal areas indicated in dark are primarily along the western side of the island.</note>
<note type="content">Fig. 2: Diffractometer patterns for sample V-2 (97) II (a) and FV-1A (b). The two patterns clearly demonstrate the increasing crystallinity with increasing age. V-2 (97) contains only protoferrihydrite, whereas in FV-1A several sharp peaks are superimposed on top of the typical protoferrihydrite pattern: N: smectite (nontronite), G: gypsum, C: claudetite, S: scorodite, H: hematite, 4: As2O4 and 5: As2O5. Letters in brackets indicate doubtful assignment of peaks to minerals.</note>
<note type="content">Fig. 3: Diffractometer patterns for sample V-2 I (a) and V-2 II (b). The two patterns demonstrate the importance of seawater contact during aging. V-2 I although slightly younger than V-2 II already contains two crystalline minerals, because it remained in contact with either seawater or a mixture of seawater and vent fluid (seawater≫vent fluid). C: claudetite, N: smectite (nontronite).</note>
<note type="content">Fig. 4: Scatter plot of As concentration vs. Fe/Mn ratio on a log scale. Tutum Bay Fe(III) oxyhydroxide deposits have similar Fe/Mn ratios as hydrothermal Fe-rich crusts from south Pacific seamounts, but As values are more than two orders of magnitude higher.</note>
<note type="content">Fig. 5: North American Shale Composite (NASC) (Haskin et al., 1968) normalized REE plots for hydrothermal Fe(III) oxyhydroxide precipitates from vents 1, 2 and 4. REE concentrations for vent waters are multiplied by 106 and the values are interpolated for Tm and extrapolated for Lu (Pichler et al., 1999b).</note>
<note type="content">Fig. 6: (a) Calculated Eh–pH diagram for the system Fe–O–H–SO4–HCO3 at 60°C (dashed lines) and 90°C (solid lines) at a pressure of 2.026 bars. Thus representing the upper and lower temperature limit of Fe(III) oxyhydroxide formation. Activities for Fe2+, SO42− and HCO3− correspond to their respective concentration in the mixture between Tutum Bay hydrothermal fluids and seawater (Table 4) at 60° and 90°C. Thermodynamic data are from a compilation by Faure (1991). Fe(OH)3 (ppd) is the field of amorphous Fe(III) oxyhydroxide. The arrow indicates the mixing trend between hydrothermal fluid and seawater. The pH is buffered due to the relatively high HCO3− concentration in the vent fluids. (b) The same Eh–pH diagram for the system Mn–O–H–SO4–HCO3. Manganese remains comparably longer in its divalent state and, therefore, in solution than Fe2+, thus explaining its absence in Tutum Bay Fe(III) oxyhydroxides.</note>
<note type="content">Fig. 7: Mixing curve between the hydrothermal fluid and seawater endmember (Table 4) based on 87Sr/86Sr ratios in Fe(III) oxyhydroxide precipitates. The dashed lines indicate the range of 87Sr/86Sr ratios (0.7048 to 0.7071) and the corresponding amount of seawater admixed to the hydrothermal fluid at the time of precipitation.</note>
<note type="content">Table 1: Description of Tutum Bay hydrothermal Fe(III) oxyhydroxide precipitates</note>
<note type="content">Table 2: Major, minor, trace element and Sr-isotope composition of Tutum Bay hydrothermal Fe(III) oxyhydroxide precipitates</note>
<note type="content">Table 3: Proton probe traverse across Tutum Bay Fe(III) oxyhydroxide sample FV-1A</note>
<note type="content">Table 4: Average chemical and isotopic endmembera compositions of Tutum Bay hydrothermal fluids for area A and area B hydrothermal fluids compared to seawater (from Pichler, 1998)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Thomas</forename>
<surname>Pichler</surname>
</persName>
<note type="biography">New address: Department of Geology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33615, USA.</note>
<note type="correspondence">
<p>Corresponding author. Tel.: +1-813-974-2236; fax: +1-813-974-2654; e-mail: pichler@chuma.cas.usf.edu</p>
</note>
<affiliation>New address: Department of Geology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33615, USA.</affiliation>
<affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Jan</forename>
<surname>Veizer</surname>
</persName>
<affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</affiliation>
</author>
<idno type="istex">6CC0B97E2577B29A628CDDB1A22B718ED355A7BC</idno>
<idno type="DOI">10.1016/S0009-2541(99)00068-6</idno>
<idno type="PII">S0009-2541(99)00068-6</idno>
<idno type="ArticleID">13371</idno>
</analytic>
<monogr>
<title level="j">Chemical Geology</title>
<title level="j" type="abbrev">CHEMGE</title>
<idno type="pISSN">0009-2541</idno>
<idno type="PII">S0009-2541(00)X0074-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">162</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="15">15</biblScope>
<biblScope unit="page" to="31">31</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Previous research on sea floor Fe(III) oxyhydroxide deposits has focused primarily on deep-sea, hydrothermal systems found along volcanically active portions of the mid-ocean ridges and on hydrogenetic deposits formed in deep basins and along continental shelves. There is, however, not much known about their formation in shallow-water settings associated with volcanic islands. The hydrothermal system at Ambitle Island, Papua New Guinea provides an excellent opportunity to study the formation of Fe(III) oxyhydroxides in a shallow-water setting. Precipitation from the hydrothermal solution is caused by mixing with seawater. Based on a 87Sr/86Sr mixing model, the calculated minimum and maximum seawater fractions are approximately 11 and 57%, respectively. Thus, precipitation of Tutum Bay Fe(III) oxyhydroxides takes place at a temperature range between approximately 60 and 93°C. The chemical composition shows low Mn contents (Fe/Mn>600), and elements that are usually enriched in Fe(III) oxyhydroxides, such as Co and V are below crustal abundance and well below their concentrations in island-arc volcanics. Arsenic concentrations, on the other hand, are by two orders of magnitude higher than those in other marine deposits. Rare earth element (REE) concentrations reflect their concentration in the hydrothermal fluids rather than seawater. The crystallinity of the deposits increases with age, as protoferrihydrite is apparently altered to Fe-smectite and hematite, and As-bearing minerals are formed. Contact with seawater, and therefore oxidizing conditions, seems to be the factor increasing the crystallinity.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Fe(III) oxyhydroxide</term>
</item>
<item>
<term>Hydrothermal system</term>
</item>
<item>
<term>Shallow water</term>
</item>
<item>
<term>Arsenic</term>
</item>
<item>
<term>Papua New Guinea</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/6CC0B97E2577B29A628CDDB1A22B718ED355A7BC/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>CHEMGE</jid>
<aid>13371</aid>
<ce:pii>S0009-2541(99)00068-6</ce:pii>
<ce:doi>10.1016/S0009-2541(99)00068-6</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Thomas</ce:given-name>
<ce:surname>Pichler</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup loc="post">1</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup loc="post">1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jan</ce:given-name>
<ce:surname>Veizer</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Institut für Geologie, Ruhr Universität, 44780 Bochum, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +1-813-974-2236; fax: +1-813-974-2654; e-mail: pichler@chuma.cas.usf.edu</ce:text>
</ce:correspondence>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>New address: Department of Geology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33615, USA.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="12" month="10" year="1998"></ce:date-received>
<ce:date-accepted day="15" month="4" year="1999"></ce:date-accepted>
<ce:abstract class="author">
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para view="all" id="simple-para.0080">Previous research on sea floor Fe(III) oxyhydroxide deposits has focused primarily on deep-sea, hydrothermal systems found along volcanically active portions of the mid-ocean ridges and on hydrogenetic deposits formed in deep basins and along continental shelves. There is, however, not much known about their formation in shallow-water settings associated with volcanic islands. The hydrothermal system at Ambitle Island, Papua New Guinea provides an excellent opportunity to study the formation of Fe(III) oxyhydroxides in a shallow-water setting. Precipitation from the hydrothermal solution is caused by mixing with seawater. Based on a
<math altimg="si8.gif">
<sup loc="pre">87</sup>
<rm>Sr</rm>
/
<sup loc="pre">86</sup>
<rm>Sr</rm>
</math>
mixing model, the calculated minimum and maximum seawater fractions are approximately 11 and 57%, respectively. Thus, precipitation of Tutum Bay Fe(III) oxyhydroxides takes place at a temperature range between approximately 60 and 93°C. The chemical composition shows low Mn contents (Fe/Mn>600), and elements that are usually enriched in Fe(III) oxyhydroxides, such as Co and V are below crustal abundance and well below their concentrations in island-arc volcanics. Arsenic concentrations, on the other hand, are by two orders of magnitude higher than those in other marine deposits. Rare earth element (REE) concentrations reflect their concentration in the hydrothermal fluids rather than seawater. The crystallinity of the deposits increases with age, as protoferrihydrite is apparently altered to Fe-smectite and hematite, and As-bearing minerals are formed. Contact with seawater, and therefore oxidizing conditions, seems to be the factor increasing the crystallinity.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Fe(III) oxyhydroxide</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Hydrothermal system</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Shallow water</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Arsenic</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Papua New Guinea</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Pichler</namePart>
<affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</affiliation>
<description>Corresponding author. Tel.: +1-813-974-2236; fax: +1-813-974-2654; e-mail: pichler@chuma.cas.usf.edu</description>
<description>New address: Department of Geology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33615, USA.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Veizer</namePart>
<affiliation>Ottawa-Carleton Geoscience Centre, University of Ottawa, Department of Geology, P.O. Box 450, Stn. A, Ottawa, ON, Canada K1N 6N5</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Previous research on sea floor Fe(III) oxyhydroxide deposits has focused primarily on deep-sea, hydrothermal systems found along volcanically active portions of the mid-ocean ridges and on hydrogenetic deposits formed in deep basins and along continental shelves. There is, however, not much known about their formation in shallow-water settings associated with volcanic islands. The hydrothermal system at Ambitle Island, Papua New Guinea provides an excellent opportunity to study the formation of Fe(III) oxyhydroxides in a shallow-water setting. Precipitation from the hydrothermal solution is caused by mixing with seawater. Based on a 87Sr/86Sr mixing model, the calculated minimum and maximum seawater fractions are approximately 11 and 57%, respectively. Thus, precipitation of Tutum Bay Fe(III) oxyhydroxides takes place at a temperature range between approximately 60 and 93°C. The chemical composition shows low Mn contents (Fe/Mn>600), and elements that are usually enriched in Fe(III) oxyhydroxides, such as Co and V are below crustal abundance and well below their concentrations in island-arc volcanics. Arsenic concentrations, on the other hand, are by two orders of magnitude higher than those in other marine deposits. Rare earth element (REE) concentrations reflect their concentration in the hydrothermal fluids rather than seawater. The crystallinity of the deposits increases with age, as protoferrihydrite is apparently altered to Fe-smectite and hematite, and As-bearing minerals are formed. Contact with seawater, and therefore oxidizing conditions, seems to be the factor increasing the crystallinity.</abstract>
<note type="content">Fig. 1: Location of Ambitle Island, one of the Feni islands in eastern Papua New Guinea (modified after Licence et al., 1987 and Pichler and Dix, 1996). Geothermal areas indicated in dark are primarily along the western side of the island.</note>
<note type="content">Fig. 2: Diffractometer patterns for sample V-2 (97) II (a) and FV-1A (b). The two patterns clearly demonstrate the increasing crystallinity with increasing age. V-2 (97) contains only protoferrihydrite, whereas in FV-1A several sharp peaks are superimposed on top of the typical protoferrihydrite pattern: N: smectite (nontronite), G: gypsum, C: claudetite, S: scorodite, H: hematite, 4: As2O4 and 5: As2O5. Letters in brackets indicate doubtful assignment of peaks to minerals.</note>
<note type="content">Fig. 3: Diffractometer patterns for sample V-2 I (a) and V-2 II (b). The two patterns demonstrate the importance of seawater contact during aging. V-2 I although slightly younger than V-2 II already contains two crystalline minerals, because it remained in contact with either seawater or a mixture of seawater and vent fluid (seawater≫vent fluid). C: claudetite, N: smectite (nontronite).</note>
<note type="content">Fig. 4: Scatter plot of As concentration vs. Fe/Mn ratio on a log scale. Tutum Bay Fe(III) oxyhydroxide deposits have similar Fe/Mn ratios as hydrothermal Fe-rich crusts from south Pacific seamounts, but As values are more than two orders of magnitude higher.</note>
<note type="content">Fig. 5: North American Shale Composite (NASC) (Haskin et al., 1968) normalized REE plots for hydrothermal Fe(III) oxyhydroxide precipitates from vents 1, 2 and 4. REE concentrations for vent waters are multiplied by 106 and the values are interpolated for Tm and extrapolated for Lu (Pichler et al., 1999b).</note>
<note type="content">Fig. 6: (a) Calculated Eh–pH diagram for the system Fe–O–H–SO4–HCO3 at 60°C (dashed lines) and 90°C (solid lines) at a pressure of 2.026 bars. Thus representing the upper and lower temperature limit of Fe(III) oxyhydroxide formation. Activities for Fe2+, SO42− and HCO3− correspond to their respective concentration in the mixture between Tutum Bay hydrothermal fluids and seawater (Table 4) at 60° and 90°C. Thermodynamic data are from a compilation by Faure (1991). Fe(OH)3 (ppd) is the field of amorphous Fe(III) oxyhydroxide. The arrow indicates the mixing trend between hydrothermal fluid and seawater. The pH is buffered due to the relatively high HCO3− concentration in the vent fluids. (b) The same Eh–pH diagram for the system Mn–O–H–SO4–HCO3. Manganese remains comparably longer in its divalent state and, therefore, in solution than Fe2+, thus explaining its absence in Tutum Bay Fe(III) oxyhydroxides.</note>
<note type="content">Fig. 7: Mixing curve between the hydrothermal fluid and seawater endmember (Table 4) based on 87Sr/86Sr ratios in Fe(III) oxyhydroxide precipitates. The dashed lines indicate the range of 87Sr/86Sr ratios (0.7048 to 0.7071) and the corresponding amount of seawater admixed to the hydrothermal fluid at the time of precipitation.</note>
<note type="content">Table 1: Description of Tutum Bay hydrothermal Fe(III) oxyhydroxide precipitates</note>
<note type="content">Table 2: Major, minor, trace element and Sr-isotope composition of Tutum Bay hydrothermal Fe(III) oxyhydroxide precipitates</note>
<note type="content">Table 3: Proton probe traverse across Tutum Bay Fe(III) oxyhydroxide sample FV-1A</note>
<note type="content">Table 4: Average chemical and isotopic endmembera compositions of Tutum Bay hydrothermal fluids for area A and area B hydrothermal fluids compared to seawater (from Pichler, 1998)</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Fe(III) oxyhydroxide</topic>
<topic>Hydrothermal system</topic>
<topic>Shallow water</topic>
<topic>Arsenic</topic>
<topic>Papua New Guinea</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Chemical Geology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CHEMGE</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19991101</dateIssued>
</originInfo>
<identifier type="ISSN">0009-2541</identifier>
<identifier type="PII">S0009-2541(00)X0074-5</identifier>
<part>
<date>19991101</date>
<detail type="volume">
<number>162</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>78</end>
</extent>
<extent unit="pages">
<start>15</start>
<end>31</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">6CC0B97E2577B29A628CDDB1A22B718ED355A7BC</identifier>
<identifier type="ark">ark:/67375/6H6-XH0MJSXC-1</identifier>
<identifier type="DOI">10.1016/S0009-2541(99)00068-6</identifier>
<identifier type="PII">S0009-2541(99)00068-6</identifier>
<identifier type="ArticleID">13371</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/6CC0B97E2577B29A628CDDB1A22B718ED355A7BC/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6CC0B97E2577B29A628CDDB1A22B718ED355A7BC
   |texte=   Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021