Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands

Identifieur interne : 000365 ( Istex/Corpus ); précédent : 000364; suivant : 000366

Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands

Auteurs : R. Sobradelo ; J. Martí

Source :

RBID : ISTEX:FA9308005D72074E0B527D09D2110894FCC2C22F

English descriptors

Abstract

In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide‐Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8–3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk‐based decision‐making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide‐Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree‐shaped Bayesian network with possible eruptive scenarios following the case of Teide‐Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each scenario. (3) Apply the model to Teide‐Pico Viejo stratovolcanoes. Finally, we compare the results with those from the Elicitation method applied before, as well as previous Bayesian event tree structures developed for other volcanoes.

Url:
DOI: 10.1029/2009JB006566

Links to Exploration step

ISTEX:FA9308005D72074E0B527D09D2110894FCC2C22F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
<author>
<name sortKey="Sobradelo, R" sort="Sobradelo, R" uniqKey="Sobradelo R" first="R." last="Sobradelo">R. Sobradelo</name>
<affiliation>
<mods:affiliation>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Aon Benfield UCL Hazard Research Centre, Department of Earth Sciences, University College London, London, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rsobradelo@ija.csic.es</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marti, J" sort="Marti, J" uniqKey="Marti J" first="J." last="Martí">J. Martí</name>
<affiliation>
<mods:affiliation>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FA9308005D72074E0B527D09D2110894FCC2C22F</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1029/2009JB006566</idno>
<idno type="url">https://api.istex.fr/document/FA9308005D72074E0B527D09D2110894FCC2C22F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000365</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
<author>
<name sortKey="Sobradelo, R" sort="Sobradelo, R" uniqKey="Sobradelo R" first="R." last="Sobradelo">R. Sobradelo</name>
<affiliation>
<mods:affiliation>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Aon Benfield UCL Hazard Research Centre, Department of Earth Sciences, University College London, London, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rsobradelo@ija.csic.es</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marti, J" sort="Marti, J" uniqKey="Marti J" first="J." last="Martí">J. Martí</name>
<affiliation>
<mods:affiliation>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">115</biblScope>
<biblScope unit="issue">B5</biblScope>
<biblScope unit="page-count">12</biblScope>
<date type="published" when="2010-05">2010-05</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Additional source</term>
<term>Aleatoric</term>
<term>Aleatoric uncertainties</term>
<term>Aleatoric uncertainty</term>
<term>Aspinall</term>
<term>Basaltic</term>
<term>Basaltic eruptions</term>
<term>Bayesian</term>
<term>Bayesian event tree</term>
<term>Bayesian methodology</term>
<term>Bayesian model</term>
<term>Caldera</term>
<term>Canary</term>
<term>Canary islands</term>
<term>Central vent eruptions</term>
<term>Central vents</term>
<term>Different types</term>
<term>Different vent locations</term>
<term>Dirichlet</term>
<term>Dirichlet distribution</term>
<term>Earth sciences</term>
<term>Elicitation</term>
<term>Epistemic</term>
<term>Epistemic uncertainty</term>
<term>Eruption</term>
<term>Eruption forecasting</term>
<term>Eruptive</term>
<term>Eruptive scenario</term>
<term>Eruptive scenarios</term>
<term>Event tree</term>
<term>Event tree structure</term>
<term>Event trees</term>
<term>Exhaustive events</term>
<term>Expert judgment</term>
<term>External triggers</term>
<term>False alarm</term>
<term>Flank</term>
<term>Flank vents</term>
<term>Geophysical data</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal unrest</term>
<term>Hazard assessment</term>
<term>Hydrothermal</term>
<term>Hydrothermal system</term>
<term>Mafic</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma composition</term>
<term>Magmatic</term>
<term>Magmatic eruption</term>
<term>Magmatic origin</term>
<term>Magmatic unrest</term>
<term>Mart</term>
<term>Marzocchi</term>
<term>Methodology</term>
<term>Monitoring data</term>
<term>Newhall</term>
<term>Next time window</term>
<term>Node</term>
<term>Other volcanoes</term>
<term>Past data</term>
<term>Phonolitic</term>
<term>Phonolitic eruptions</term>
<term>Phonolitic magmas</term>
<term>Pico</term>
<term>Pico viejo</term>
<term>Pico viejo stratovolcanoes</term>
<term>Posterior distribution</term>
<term>Previous event trees</term>
<term>Probabilistic</term>
<term>Rift</term>
<term>Risk assessment</term>
<term>Scenario</term>
<term>Sector collapse</term>
<term>Sector failure</term>
<term>Seismic</term>
<term>Seismic unrest</term>
<term>Sobradelo</term>
<term>Stratovolcanoes</term>
<term>Teide</term>
<term>Teide volcano</term>
<term>Tenerife</term>
<term>Theoretical models</term>
<term>Time window</term>
<term>Time windows</term>
<term>Total probability</term>
<term>Unrest</term>
<term>Viejo</term>
<term>Viejo bayesian event tree</term>
<term>Viejo stratovolcanoes</term>
<term>Volcanic</term>
<term>Volcanic crisis</term>
<term>Volcanic hazard</term>
<term>Volcanic hazard assessment</term>
<term>Volcanic system</term>
<term>Volcanic unrest</term>
<term>Volcano</term>
<term>Volcanol</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Additional source</term>
<term>Aleatoric</term>
<term>Aleatoric uncertainties</term>
<term>Aleatoric uncertainty</term>
<term>Aspinall</term>
<term>Basaltic</term>
<term>Basaltic eruptions</term>
<term>Bayesian</term>
<term>Bayesian event tree</term>
<term>Bayesian methodology</term>
<term>Bayesian model</term>
<term>Caldera</term>
<term>Canary</term>
<term>Canary islands</term>
<term>Central vent eruptions</term>
<term>Central vents</term>
<term>Different types</term>
<term>Different vent locations</term>
<term>Dirichlet</term>
<term>Dirichlet distribution</term>
<term>Earth sciences</term>
<term>Elicitation</term>
<term>Epistemic</term>
<term>Epistemic uncertainty</term>
<term>Eruption</term>
<term>Eruption forecasting</term>
<term>Eruptive</term>
<term>Eruptive scenario</term>
<term>Eruptive scenarios</term>
<term>Event tree</term>
<term>Event tree structure</term>
<term>Event trees</term>
<term>Exhaustive events</term>
<term>Expert judgment</term>
<term>External triggers</term>
<term>False alarm</term>
<term>Flank</term>
<term>Flank vents</term>
<term>Geophysical data</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal unrest</term>
<term>Hazard assessment</term>
<term>Hydrothermal</term>
<term>Hydrothermal system</term>
<term>Mafic</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Magma composition</term>
<term>Magmatic</term>
<term>Magmatic eruption</term>
<term>Magmatic origin</term>
<term>Magmatic unrest</term>
<term>Mart</term>
<term>Marzocchi</term>
<term>Methodology</term>
<term>Monitoring data</term>
<term>Newhall</term>
<term>Next time window</term>
<term>Node</term>
<term>Other volcanoes</term>
<term>Past data</term>
<term>Phonolitic</term>
<term>Phonolitic eruptions</term>
<term>Phonolitic magmas</term>
<term>Pico</term>
<term>Pico viejo</term>
<term>Pico viejo stratovolcanoes</term>
<term>Posterior distribution</term>
<term>Previous event trees</term>
<term>Probabilistic</term>
<term>Rift</term>
<term>Risk assessment</term>
<term>Scenario</term>
<term>Sector collapse</term>
<term>Sector failure</term>
<term>Seismic</term>
<term>Seismic unrest</term>
<term>Sobradelo</term>
<term>Stratovolcanoes</term>
<term>Teide</term>
<term>Teide volcano</term>
<term>Tenerife</term>
<term>Theoretical models</term>
<term>Time window</term>
<term>Time windows</term>
<term>Total probability</term>
<term>Unrest</term>
<term>Viejo</term>
<term>Viejo bayesian event tree</term>
<term>Viejo stratovolcanoes</term>
<term>Volcanic</term>
<term>Volcanic crisis</term>
<term>Volcanic hazard</term>
<term>Volcanic hazard assessment</term>
<term>Volcanic system</term>
<term>Volcanic unrest</term>
<term>Volcano</term>
<term>Volcanol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide‐Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8–3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk‐based decision‐making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide‐Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree‐shaped Bayesian network with possible eruptive scenarios following the case of Teide‐Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each scenario. (3) Apply the model to Teide‐Pico Viejo stratovolcanoes. Finally, we compare the results with those from the Elicitation method applied before, as well as previous Bayesian event tree structures developed for other volcanoes.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>magmatic</json:string>
<json:string>viejo</json:string>
<json:string>node</json:string>
<json:string>bayesian</json:string>
<json:string>phonolitic</json:string>
<json:string>magma</json:string>
<json:string>eruption</json:string>
<json:string>basaltic</json:string>
<json:string>tenerife</json:string>
<json:string>stratovolcanoes</json:string>
<json:string>teide</json:string>
<json:string>viejo stratovolcanoes</json:string>
<json:string>eruptive</json:string>
<json:string>geothermal</json:string>
<json:string>elicitation</json:string>
<json:string>event tree</json:string>
<json:string>magmatic eruption</json:string>
<json:string>caldera</json:string>
<json:string>canary islands</json:string>
<json:string>epistemic</json:string>
<json:string>canary</json:string>
<json:string>marzocchi</json:string>
<json:string>volcanol</json:string>
<json:string>sobradelo</json:string>
<json:string>pico</json:string>
<json:string>volcanic</json:string>
<json:string>mart</json:string>
<json:string>geotherm</json:string>
<json:string>external triggers</json:string>
<json:string>volcanic hazard</json:string>
<json:string>aleatoric</json:string>
<json:string>seismic</json:string>
<json:string>unrest</json:string>
<json:string>magmatic unrest</json:string>
<json:string>seismic unrest</json:string>
<json:string>hydrothermal</json:string>
<json:string>viejo bayesian event tree</json:string>
<json:string>scenario</json:string>
<json:string>bayesian methodology</json:string>
<json:string>expert judgment</json:string>
<json:string>bayesian model</json:string>
<json:string>volcano</json:string>
<json:string>sector failure</json:string>
<json:string>aspinall</json:string>
<json:string>mafic</json:string>
<json:string>next time window</json:string>
<json:string>dirichlet</json:string>
<json:string>volcanic unrest</json:string>
<json:string>time window</json:string>
<json:string>newhall</json:string>
<json:string>event tree structure</json:string>
<json:string>epistemic uncertainty</json:string>
<json:string>bayesian event tree</json:string>
<json:string>hydrothermal system</json:string>
<json:string>rift</json:string>
<json:string>volcanic system</json:string>
<json:string>volcanic hazard assessment</json:string>
<json:string>event trees</json:string>
<json:string>phonolitic eruptions</json:string>
<json:string>basaltic eruptions</json:string>
<json:string>past data</json:string>
<json:string>total probability</json:string>
<json:string>methodology</json:string>
<json:string>flank</json:string>
<json:string>magma composition</json:string>
<json:string>teide volcano</json:string>
<json:string>previous event trees</json:string>
<json:string>sector collapse</json:string>
<json:string>flank vents</json:string>
<json:string>posterior distribution</json:string>
<json:string>additional source</json:string>
<json:string>dirichlet distribution</json:string>
<json:string>time windows</json:string>
<json:string>phonolitic magmas</json:string>
<json:string>probabilistic</json:string>
<json:string>different types</json:string>
<json:string>different vent locations</json:string>
<json:string>volcanic crisis</json:string>
<json:string>earth sciences</json:string>
<json:string>eruption forecasting</json:string>
<json:string>aleatoric uncertainties</json:string>
<json:string>central vent eruptions</json:string>
<json:string>hazard assessment</json:string>
<json:string>risk assessment</json:string>
<json:string>aleatoric uncertainty</json:string>
<json:string>monitoring data</json:string>
<json:string>geothermal unrest</json:string>
<json:string>magmatic origin</json:string>
<json:string>eruptive scenarios</json:string>
<json:string>pico viejo</json:string>
<json:string>eruptive scenario</json:string>
<json:string>other volcanoes</json:string>
<json:string>magma chamber</json:string>
<json:string>exhaustive events</json:string>
<json:string>pico viejo stratovolcanoes</json:string>
<json:string>central vents</json:string>
<json:string>false alarm</json:string>
<json:string>theoretical models</json:string>
<json:string>geophysical data</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>R. Sobradelo</name>
<affiliations>
<json:string>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</json:string>
<json:string>Aon Benfield UCL Hazard Research Centre, Department of Earth Sciences, University College London, London, UK</json:string>
<json:string>E-mail: rsobradelo@ija.csic.es</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Martí</name>
<affiliations>
<json:string>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>long‐term volcanic hazard</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>event tree</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>probability</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>estimation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Bayesian inference</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Teide‐Pico Viejo</value>
</json:item>
</subject>
<articleId>
<json:string>2009JB006566</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide‐Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8–3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk‐based decision‐making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide‐Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree‐shaped Bayesian network with possible eruptive scenarios following the case of Teide‐Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each scenario. (3) Apply the model to Teide‐Pico Viejo stratovolcanoes. Finally, we compare the results with those from the Elicitation method applied before, as well as previous Bayesian event tree structures developed for other volcanoes.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2233</abstractCharCount>
<pdfWordCount>7901</pdfWordCount>
<pdfCharCount>49162</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>337</abstractWordCount>
</qualityIndicators>
<title>Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>115</volume>
<issue>B5</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>12</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Geological</value>
</json:item>
<json:item>
<value>Disaster risk analysis and assessment</value>
</json:item>
<json:item>
<value>Geological</value>
</json:item>
<json:item>
<value>SEISMOLOGY</value>
</json:item>
<json:item>
<value>Volcano seismology</value>
</json:item>
<json:item>
<value>VOLCANOLOGY</value>
</json:item>
<json:item>
<value>Volcanic hazards and risks</value>
</json:item>
<json:item>
<value>Volcano monitoring</value>
</json:item>
<json:item>
<value>General or miscellaneous</value>
</json:item>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1029/2009JB006566</json:string>
</doi>
<id>FA9308005D72074E0B527D09D2110894FCC2C22F</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/FA9308005D72074E0B527D09D2110894FCC2C22F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/FA9308005D72074E0B527D09D2110894FCC2C22F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/FA9308005D72074E0B527D09D2110894FCC2C22F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<licence>Copyright 2010 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2010-05"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
<title level="a" type="short">TEIDE‐PICO VIEJO BAYESIAN EVENT TREE</title>
<author xml:id="author-0000">
<persName>
<forename type="first">R.</forename>
<surname>Sobradelo</surname>
</persName>
<email>rsobradelo@ija.csic.es</email>
<affiliation>
<orgName>Institute of Earth Sciences “Jaume Almera,” CSIC</orgName>
<address>
<settlement type="city">Barcelona</settlement>
<country key="ES">Spain</country>
</address>
</affiliation>
<affiliation>
<orgName>Aon Benfield UCL Hazard Research Centre, Department of Earth Sciences</orgName>
<orgName>University College London</orgName>
<address>
<settlement type="city">London</settlement>
<country key="GB">UK</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">J.</forename>
<surname>Martí</surname>
</persName>
<affiliation>
<orgName>Institute of Earth Sciences “Jaume Almera,” CSIC</orgName>
<address>
<settlement type="city">Barcelona</settlement>
<country key="ES">Spain</country>
</address>
</affiliation>
</author>
<idno type="istex">FA9308005D72074E0B527D09D2110894FCC2C22F</idno>
<idno type="DOI">10.1029/2009JB006566</idno>
<idno type="editorialOffice">2009JB006566</idno>
<idno type="society">B05206</idno>
<idno type="unit">JGRB16226</idno>
<idno type="toTypesetVersion">file:JGRB.JGRB16226.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202b</idno>
<idno type="book-part-DOI">10.1002/jgrb.v115.B5</idno>
<idno type="product">JGRB</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">115</biblScope>
<biblScope unit="issue">B5</biblScope>
<biblScope unit="page-count">12</biblScope>
<date type="published" when="2010-05"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrb16226-para-0001">In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide‐Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8–3 km
<hi rend="superscript">3</hi>
of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk‐based decision‐making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide‐Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree‐shaped Bayesian network with possible eruptive scenarios following the case of Teide‐Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each scenario. (3) Apply the model to Teide‐Pico Viejo stratovolcanoes. Finally, we compare the results with those from the Elicitation method applied before, as well as previous Bayesian event tree structures developed for other volcanoes.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrb16226-kwd-0001">long‐term volcanic hazard</term>
<term xml:id="jgrb16226-kwd-0002">event tree</term>
<term xml:id="jgrb16226-kwd-0003">probability</term>
<term xml:id="jgrb16226-kwd-0004">estimation</term>
<term xml:id="jgrb16226-kwd-0005">Bayesian inference</term>
<term xml:id="jgrb16226-kwd-0006">Teide‐Pico Viejo</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</classCode>
<classCode scheme="articleCategory">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
<classCode scheme="tocHeading1">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/FA9308005D72074E0B527D09D2110894FCC2C22F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb16226">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi>10.1002/jgrb.v115.B5</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="115">115</numbering>
<numbering type="journalIssue">B5</numbering>
</numberingGroup>
<coverDate startDate="2010-05">May 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="20" type="article" status="forIssue">
<doi>10.1029/2009JB006566</doi>
<idGroup>
<id type="editorialOffice" value="2009JB006566"></id>
<id type="society" value="B05206"></id>
<id type="unit" value="JGRB16226"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
<title type="tocHeading1">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2010 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-04-27"></event>
<event type="manuscriptRevised" date="2009-11-25"></event>
<event type="manuscriptAccepted" date="2009-12-18"></event>
<event type="firstOnline" date="2010-05-21"></event>
<event type="publishedOnlineFinalForm" date="2010-05-21"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.1; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-17"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4302">Geological</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4333">Disaster risk analysis and assessment</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4302">Geological</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7280">Volcano seismology</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8488">Volcanic hazards and risks</subject>
<subject href="http://psi.agu.org/taxonomy5/8419">Volcano monitoring</subject>
<subject href="http://psi.agu.org/taxonomy5/8499">General or miscellaneous</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb16226-cit-0000" type="self">
<author>
<familyName>Sobradelo</familyName>
,
<givenNames>R.</givenNames>
</author>
, and
<author>
<givenNames>J.</givenNames>
<familyName>Martí</familyName>
</author>
(
<pubYear year="2010">2010</pubYear>
),
<articleTitle>Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>115</vol>
, B05206, doi:
<accessionId ref="info:doi/10.1029/2009JB006566">10.1029/2009JB006566</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB16226.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="9300"></count>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
<title type="short">TEIDE‐PICO VIEJO BAYESIAN EVENT TREE</title>
<title type="shortAuthors">Sobradelo and Martí</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrb16226-cr-0001" affiliationRef="#jgrb16226-aff-0001 #jgrb16226-aff-0002">
<personName>
<givenNames>R.</givenNames>
<familyName>Sobradelo</familyName>
</personName>
<contactDetails>
<email normalForm="rsobradelo@ija.csic.es">rsobradelo@ija.csic.es</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrb16226-cr-0002" affiliationRef="#jgrb16226-aff-0001">
<personName>
<givenNames>J.</givenNames>
<familyName>Martí</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="ES" type="organization" xml:id="jgrb16226-aff-0001">
<orgName>Institute of Earth Sciences “Jaume Almera,” CSIC</orgName>
<address>
<city>Barcelona</city>
<country>Spain</country>
</address>
</affiliation>
<affiliation countryCode="GB" type="organization" xml:id="jgrb16226-aff-0002">
<orgDiv>Aon Benfield UCL Hazard Research Centre, Department of Earth Sciences</orgDiv>
<orgName>University College London</orgName>
<address>
<city>London</city>
<country>UK</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb16226-kwd-0001">long‐term volcanic hazard</keyword>
<keyword xml:id="jgrb16226-kwd-0002">event tree</keyword>
<keyword xml:id="jgrb16226-kwd-0003">probability</keyword>
<keyword xml:id="jgrb16226-kwd-0004">estimation</keyword>
<keyword xml:id="jgrb16226-kwd-0005">Bayesian inference</keyword>
<keyword xml:id="jgrb16226-kwd-0006">Teide‐Pico Viejo</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16226:jgrb16226-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16226:jgrb16226-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb16226-para-0001" label="1">In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide‐Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8–3 km
<sup>3</sup>
of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk‐based decision‐making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide‐Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree‐shaped Bayesian network with possible eruptive scenarios following the case of Teide‐Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each scenario. (3) Apply the model to Teide‐Pico Viejo stratovolcanoes. Finally, we compare the results with those from the Elicitation method applied before, as well as previous Bayesian event tree structures developed for other volcanoes.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>TEIDE‐PICO VIEJO BAYESIAN EVENT TREE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Sobradelo</namePart>
<affiliation>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</affiliation>
<affiliation>Aon Benfield UCL Hazard Research Centre, Department of Earth Sciences, University College London, London, UK</affiliation>
<affiliation>E-mail: rsobradelo@ija.csic.es</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Martí</namePart>
<affiliation>Institute of Earth Sciences “Jaume Almera,” CSIC, Barcelona, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2010-05</dateIssued>
<dateCaptured encoding="w3cdtf">2009-04-27</dateCaptured>
<dateValid encoding="w3cdtf">2009-12-18</dateValid>
<edition>Sobradelo, R., and J. Martí (2010), Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands, J. Geophys. Res., 115, B05206, doi:10.1029/2009JB006566.</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="tables">2</extent>
<extent unit="words">9300</extent>
</physicalDescription>
<abstract>In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide‐Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8–3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk‐based decision‐making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide‐Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree‐shaped Bayesian network with possible eruptive scenarios following the case of Teide‐Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each scenario. (3) Apply the model to Teide‐Pico Viejo stratovolcanoes. Finally, we compare the results with those from the Elicitation method applied before, as well as previous Bayesian event tree structures developed for other volcanoes.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.</note>
<subject>
<genre>keywords</genre>
<topic>long‐term volcanic hazard</topic>
<topic>event tree</topic>
<topic>probability</topic>
<topic>estimation</topic>
<topic>Bayesian inference</topic>
<topic>Teide‐Pico Viejo</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4302">Geological</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4333">Disaster risk analysis and assessment</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4302">Geological</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7280">Volcano seismology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8488">Volcanic hazards and risks</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8419">Volcano monitoring</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8499">General or miscellaneous</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>115</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B5</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">FA9308005D72074E0B527D09D2110894FCC2C22F</identifier>
<identifier type="DOI">10.1029/2009JB006566</identifier>
<identifier type="ArticleID">2009JB006566</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2010 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/FA9308005D72074E0B527D09D2110894FCC2C22F/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FA9308005D72074E0B527D09D2110894FCC2C22F
   |texte=   Bayesian event tree for long‐term volcanic hazard assessment: Application to Teide‐Pico Viejo stratovolcanoes, Tenerife, Canary Islands
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021